KEY TO THE ISOPODS OF THE PACIFIC COAST OF NORTH AMERICA, WITH DESCRLPTIONS OF TWENTY-TWO NEW SPECIES.

By Harriet Richardson.

The isopods of the Pacific coast of North America have claimed the attention of a number of naturalists during the last half of the nineteenth century. Among the first to contribute to the knowledge of the fanna of that region was Dana. Stimpson also belongs to the earlier part of that period; his work on the Crustacea and Eehinodermata of the Pacific shores of North America, published in 1857, was the first special treatise on the forms of that locality. In comnection with the work of the later part of the past fifty years, the uames of Stuxberg, Loekington, and Harford form one group as contemporaneons workers (1575-76), those of Sehiwdte and Meinert, and BuddeLund, another group (1883-85), while the publications of Dr. Hansen and Dr. Benedict represent the latest (1598) work on the isopods of that coast.
The number of species already described is 75 , and 22 are added in the present work. These species represent 44 gencra and 16 families, as shown in the following table:

> LIST OF TRIBES, FAMILIES, (iENERA, AND SPECHES.
Page,
I. Chelifera 819
Family I. Tanaidas 819

1. Tanais 819
2. loricatus Spence Bate 819
3. alascensis, new species 819
II. F'labellifera 820
Family II. Limnoriida 821
4. Limnoria $8: 1$
5. lignorum (Rathke) 821
Family III. Cirolanidio 822
6. Cirolana 822
7. harfordi (Lockington) $8: 2$
8. linguifrons, new species 82:
9. Eurydice 824
10. caudata, now species 824
Family IV. Corallanide 825
11. Corallanu 825
12. truncata, new species 82.
II. Flabellifera-Contimued. Page.
Family V. Agirle 825
13. Ega 826
14. microphthalma Dana 829
15. lecontii (Dinna) $8 \div 6$
16. Rocincla 827
17. cornuta Richardson 827
18. belliceps (Stimpson) 827
19. laticaula Hausen 828
20. tuberculosa Richardson 828
21. aries Schirdte and Meinert 828
Family VI. Cymothoidir 828
22. Meinertia 829
23. gaudichandli (Milnc-Edwinds) 829
24. Livoncea $8: 9$
25. califormira Schimdte and Meinert 829
26. vulgaris Stimpson 830
27. panumensis Schiorlte and Meinert 830
28. Verocila 830
29. californica Schicelte and Meinert. 830
30. Inilocra 830
31. occilentalis, new species 830
Family VII. Suhheromide 831
32. Dynamewe 832
33. dilatuta, now spocies 832
34. tuberculosa, new species $83: 3$
35. bencdicti, new species $8: 31$
36. glabra, now species 834
37. Sphuroma 835
38. amplicaula Stimpeson 835
39. rhomburum, new нресіен 83%
40. octoncum, hew species 836
41. oregonensis Dana 836
42. Treticeps 836
43. alascemsis Richardson $8: 37$
44. comexus, new species 837
45. Cilicala 838
46. cordata, new species 839
47. caudata gilliant, new subspecios 840
48. gramulosa, new species 841
Family VIII. Serolide 842
49. Serolis 842
50. carinata Lockington 842
51. Valvifera 84!
Family 1X. Itotoida? 842
52. Glyptonotus 843
53. cutomon (Linuturs) 843
54. sabini (Kroyer) 844
55. Iilotea 844
56. resccata Stimpson 8.4
57. gracillima Dana 844
58. motoma Stimpson 84.
59. rectilincata Lockington 845
60. wosnescnskii Brandt $841 i$
61. ochotensis liraudt 846
III. Valvifiera-Continued.Family IX. Idoteidx-Continued.
62. Idotca-Continued. Page.
63. stenops Benedict 846
64. whitei Stimpson 846
65. Synidotea 817
66. pallida Bonedict 818
67. erosa Benedict 848
68. nebulosa Benedict. 848
69. angulata Benodict 848
70. consolidata (Stimpson) 848
71. bicuspida (Owen) 8.18
72. laticanda Benedict 849
73. harfordi Benedict 849
74. nolulosa (Krфyer) 849
75. lavis Benedict. 849
76. muヤicata (Harford) 849
77. picta Beuedict 849
78. Colidotea 849
79. rostrata (Bonedict) 849
80. Cleantis 850
81. occidentalis, new species 850
82. heuthii, new species 851
83. Eusymmerus 852
84. antcnuatu8, new specics 853
Family X. Arcturida 853
85. Arcturus 853
86. beringanus Bonedict 854
87. longispinis Benerlict 854
88. intermerlius, now species 854
89. murdochi Benedict 855
90. glaber Benedict 855
IV. Asellota 856
Family XI. Asellidie 856
91. Asellus 856
92. tomalensis Harford 856
Family XII. Janiride 856
93. Jara 857
94. valishiana Spence Bato. 857
95. Ianthe 857
96. triangulata, new species 857
97. crostrata, new species 858
98. Jonira 859
99. occidentalis Walker 859
100. Jaropsis 859
101. lobata, new species 859
V. Oniscoidea 860
Family XIII. Oniscida 861
102. Porcellio 861
103. formosus Stuxberg 862
104. levis Latreille 862
105. scaber Latreille 863
106. Metoponorthus. 863
107. mruinosus Budde-Lund 863
Proc. N. M. vol. xxi- 52
V. (oniscondea - Continued.
Family XIII, Gniscida-Contimmed. Page.
108. Allomiscus 864
7if. mirabilis (Budde-Lamd) 86.1
109. cornutus Budde-Lund 86.1
110. perconcex'us Dana 864
111. Lyprobius 861
112. رusillus lindle-Lund 80.4
Family XIV. Armadillidida 865
113. ('ubaris 8(i.)
114. califormica (Stuxberg) 8(:5)
115. afimis (Danit) 865
Family XV, Ligiida *(i)
116. Ligiu Xiti
117. oec:drulalis Wina 866
と3. pallasii 13randt 866
8.t. exoticu Ronx 816
118. Ligidlum 866
119. hypnorum (C'uvier) 867
86, tenue budde-Lund 867
i6, Styloniscns 867
120. grucilis Jana 867
VI. Erichalidea 867
Family XVI. Hopyridie 867
121. Ar!eia 868
122. pugcttensis 1):111a 868
123. depanperala Stimpson. 8 (5x
124. J'hyllodurus sif8
125. abdominalis Stimpson 868
126. Riopyroilds 868
127. acutimurginatus Stimpson 868
128. I'scudione 868
129. yiurdi C'alman 869
130. yolacanthe Hansen $86!$
131. Bathygyge X6!)
132. grandis Hansen $86!$
133. Cryptione 869
134. clongata Hansen 869
135. P'arergeia 869
136. ornata Hansen 869
137. Ione 869
138. coruutu Spernce late 869

The author has used Dr. Benedict's keys for the genera Synidotea and Lreturus, and is indebted to Professor Sars for many suggestions obtained from his excellent work on the Crustacea of Norway. In many places his synopses of the families and genera have been used in entirety. Other authors have been most helpful; Hansen on the Cirolanidre; Schiodte and Meinert on the Cymothoide; Budde-Lund on the Oniscide, and others, to whose works specific references are made.

The present paper is based on material contained in the U.S. National Muscum.

a. Legs of first pair cheliform. Uroporia terminal. Pleopoda, whon distinetly
 a^{\prime}. Lous of first pair not cheliform.
b. Uropoda latoral.
c. Uropoda forming togethor with the tominal segmont of the motasome a candal fan. Jleopoda for the mosi part natatory.... IV. Fbaberiffera (p. 820).
e^{\prime}. Uropoda valvolike, infloxed, arching over the pleoporla, whirh to a great extent are branchial.
III. Valvileira (1, 842).
b^{\prime}. Uropoda terminal.
c. Free forms.
d. L'leoporla oxclusively hanchial, gromerally covered by a thin operenlar plate (the modified first pair)................................. IV. Asblaota (p. Xín).
d. Pleopoda fittod for air-hreathing.................... V. (Nisconbea (p. \&f0).
c^{\prime}. Parasitic lorms. .. VI. EbICARIDEA (p.867).

I. CHELIFERA.

J'amily I. 'JANAID.E.
Body scarcely attemated behind. Mandibles without palp. Coxal plates inconspicuous. Superior antenna: with one multiarticnlate flagellum. Anterior maxilat with only a single masticatory lobe; posterior ones quite rulimentary. Second pair of legs ambulatory in character. Epignath of maxillipeds narrow, falciform.

1. TANAIS Audouin and Milne-Edvards.

Antenne short, subequal. I'leon five-jointer; fourth joint short; fifth joint terminated by a pair of single branched filamentary mopoda. Only three pairs of pleopoda. Palp of anterior maxilla biarticulate. Eyes well developed. Superior antenna three-articnlate, with small terminal tlagelhm.

ANALYTICAL, KEY TO 'THE SIPECIES OW TANALS.

a. Inferior antemie scarcely half the longth of superior antemue. Pereiopoda having the lirst three joints short and broal, allixed tosides of pereion likes plates of mail

1. Tunais loricatus Spence Bato.
a^{\prime}. Inforior and smperior antemse of noerly ecfual length. Poreioporla with joints not dilated, slender. 2. Tantis alescensis, now spories.

1. TANAIS LORICATUS Spence Bate.

Tanais loricalus Spence Bate, Lord's Naturalist in liritish Columbii, II (18bi6), 1. 282.

IHabitat.-Esíquimault Harbor, British Columbia.
2. TANAIS ALASCENSIS, new species.

Borly three and a half times longer than broarl.
Head large, marrowed anteriorly. Frontal margin almost straight.

[^0]First pair of antoman short, stont, consisting of fonm joints, the tirst, joint boing the lomgost. Serond patir of antomme moro slemder, a littlo longer, consisting of fonr joints, the tirst joint being

lijh. 1. 'I'anila aliah.
天 K. U, HHEHAL, VH:W ; b, I,ANT TIWO JOIN'H
 rAlk. longest, and a rudimentary thgellum. Hyes small and perlanoulaterl.
'The tirst segment of the thorax is eonfluent with the hear. The secomb, thime fometil, and tilth seg. ments increase slightly in longth; the fifth and sixth are about equal; the soventh is not quite so long is the preserling oue.
'Thes alsdomen is composed of live segments, the lirst, three of which :1re subegual; the fourth is short, about hatf as long as any of the others and also narmowe ; the forminal segment is as long as the two preceding ones togethor, and is rombled posterionly, with a slight modian noteh. The segments of tho abolomon deeresase in width gradnally from the first to the torminal segment. The terminal tilamonts ares seven jointed and singlo-branched, and are fimishod at their extromitios with a low long hairs.
'The limst, patir of hegs are stont and eholato; the propodas is produced into a strong ímmovable finger, irrognlar in shape, having its contral portion raised and frumeate on its upper surface, which is distinctly sormate. 'The dactylus is likowiso serrato on its inner surface. The other logs are slender, with a gradhal increase in stontness.

Color brown, matked in some specimens with a darker brown, amd having oval patahes of the darker color on the head. Kyska Harlor, Mankin; Mı. W. H. Dall eollector; depth, 6 to s falloms.

T'ype.-No. 2д56i3, U.S.N.M.

11. FLABELLIFERA.

a. Ploon consiating of six nugmenta.
b. Wroporda with ono of tho brmohes almont ohsolote or radimentary-not lammile lor'm \qquad

b^{\prime}. Vropoda wilh hoth hrmabon doveloped; mostly lamelliform.
0.' Maxillipede with the palp froe, tho margine of the last two jointe more or lase sefasos, nover fimbinhord with hooke.

[^1]

 tho phato of tho liral, joint armed wilh fhroon minas, hath of the hifel wilh

 plakem ahmost rudimentary, wilh low mata. Maxilljode wilh the palp

d. Mandiblos with thenecoudary plata vory ollan visihlo; palp will an intalod

"'. I'luon comaiating of legn than mix magimentas.

Fimily II. I،MN()RIII, お.

气. LIMNORIA LलHCH.

3. LIMNORIA I.IGNORUM (Rathke).

 II (Whiles).

Limnoria uncinatu Helier, Varlı, k. k. Zool. Bot, Ges. Wien, XV1, 1866, 1. 734.
Limnoria lignorum Ifarger, Report 1T. S. Commissioner of l'ish and Fisheries, 1878 , Pt. 4, pp. 373, 376. (See Marger for further synonymy.)
Limmoria californica Hewston, Proc. Cal. Acad. Sci., V, 187., p. 24 (nomen mudum).
Habitat.-Pacific Ocean; Bering Island. Also found on East coast of North America from Florida to Halifax, on the coast of Great Britain, and in the North Sea. Specimens from San Diego, California, collected by Mr. Hemry Hemphill and labeled "Limoriu californica Hewston" are in the National Museum.

Family III. CIROLANIDAE.

ANALYTICAL KEY TO THE GENEIBA OF CIROIANIDAE.

a. Peduncle of second antenne five-jointed. Plate of second joint of maxilliperls furnished with hooks. First and second pleopods alike, with at least inner branch submembranaceons. Uropoda with inner angle of peduncle prodnced. 3. Cirolana.
a^{\prime}. Peduncle of second antenn:e four-jointed. Plate of second joint of maxillipeds withont hooks. Pleoporla with both hranches sulmembranaceous. Tropota with inner angle of pelmnele very little prodncel. Supcrior antenne with first joint of peduncle ruite short, amd extended straight in front at a right angle to remaining part of the antenua \qquad 4. Eurydice.

3. CIROLANA Leach.

ANALYTICAL, KEY TO SIECIES OF CIROLANA.

a. Heal without median process. First pair of autcmu: reach apex of peduncle of second pair of antennie. Terminal abdominal segment subtriangular, armed on its posterior margin with twenty-six spines. Both branches of the aropoda rombled posteriorly and armed with spines.
4. Cirolana harfordi (Lockington).
a^{\prime}. Head with long, straight median projection. First pair of antenna reach the posterior matrgin of the third thoracic segment. Terminal abominal segment ronnded and crenulate on its posterior margin and fringed with long hairs. Inver branch of the uropoda obliquely trumeate posteriorly.
5. Cirolana linguifrons, new spucies.

4. CIROLANA HARFORDI (Lockington).

Ega harfordi Lockington, Proc. Cal. Acad. Sci., VII, 1877, Pt. 1, p. 46.
Cirolana californica Hansen, Vidensk. Selsk. Skr., Gth ser., natur, og math. Aff. V, 1890, pp. 338, 339.
Habitat.- Victoria, British Columbia; California: Santa Rosa Island, San Diego, Catalina Harbor, Pacific Grove, Monterey Bay; Lower California, specimens lighter in color.

Miers ${ }^{2}$ remarks upou having examined specimens of E!fa harfordi, sent by Mr. Lockington to the British Musem and designated Idotea

[^2]herfordi in a manmseript note of the anthor. He considers tinat the specimens belong to the genus Cirolana, or a closely allied type, withont further identifying them. Hansen ${ }^{1}$ also states that, according to Miers, Ega harfordi is probably a Ciroluma. He had not seen Lockington's description, but followed Miers regarding the systematic position of the species.
Specimens of Ega harfordi were sent by Mr. S. J. Holmes to the National Muserm from the California Academy of Sciences, which prove to be identical with Cirolana californica Hansen.

5. CIROLANA LINGUIFRONS, new species.

Color, yellow, marked with seattered black dots. Body elongateovate, about five times longer than broad, greatly convex.

Heal with the froutal margin produced in a long, straight process, rounded anteriorly and somewhat dilated. Eyes large, distinct. First pair of antemme with joints of the peduncle large; flagellum of fifteen short joints extends to the posterior margin of the third thoracic segment. Second pair of antenna, with a flagellum of thirtcen long joints,
 extend to the posterior margin of the fifth thoracie segment.
The first three segments of the thorax are short; the other four segments are long. The epimera of the second, third, and fourth segments are not produced at the apex; those of the fifth, sixth, and seventh but slightly produced.

All the abrlominal segments conspicuous, the first five being of equal length. The terminal segment is rounded posteriorly, faintly crenulate and fringed with long hairs. The base of this segment is raised above the other portion and has a welldefined elge with two points extending backward, one on either side of the median line. The uropoda extend beyond the tip of the abdomen; the inner branch is obliquely truncate; the onter branch is more rounded; both branches are fringed with long hairs.

The prehensile legs are short; the gressorial legs are long and slemfer. The legs increase gradually in length from the first to the seventh pair.

Two specimens, from Monterey Bay, California, collected by Mr. Heath from sandy shore at mean tide.

Type.-No. 22564, U.S.N.M.

[^3]
4. EURYDICE Leach.

6. EURYDICE CAUDATA, new species.

Body elongate and narrow. In male, abrlomen is equal in length to thorax; in female, it is shorter. Surface of body smooth.

Head widely rounded in front; its anterior margin narrowly thickened. Eyes large and round and sitnated at a distance of one-third the width of the head apart. First pair of antemme extend to the posterior margin of the head; flagellum contains five articles, the first of which is very long and those following quite short. The second pair of antenna extend as far as the posterior margin of the fourth segment of the abdomen; the flagellum consists of twenty-five long, slender joints. In the female, the second pair of antenne are much shorter, reaching only to the posterior margin of the last thoracie segment; the flagellum contains about twenty joints.

The thoracie segments are subequal. The epimera are narrow, and those of the last three or four segments acutely

Fig. 3.-Eulrydice catidata; LAST TWO ABbOMINAL SEGMENTS. (ireattivenlargel). pointed.

All the abdominal segments are visible in a dorsal view. The terminal segment is rounded at the sides. and truncate at its extremity, the lateral angles being produced in a short thiangular process, between which the posterior margin is distinctly denticnlate, and bears four spines, which are about twice as long as the lateral teeth. The mroporla are short, not reaching the extremity of the terminal segment, are tiuncate and crenulate on their posterior margins. The uroporla, as well as the terminal, segment are fringed with short hairs.

The legs are long and slender and armed with many spines.
Color, light brown marked with black spots.
Individuals of this species were collected at Isthmus Cove, Catalina Island, California, by the U.S. Fish Commission steamer Albatross.

Type.-No. 22565, U.S.N.M.
This species resembles E. grimaldii Dollfns ${ }^{1}$ more closely than it does any other species of the genns. It differs in the following characters:

1. The greater number of joints in the tlagellum of the first pair of antenne. In our species there are five joints, while in E. !rimaldii the tlagellum is uniarticulate.
2. In the fewer nimber of joints in the llagellum of the second pair of antenne. In our species there are only twenty-five, while in E. grimaldii the flagellum contains thirty-two articles.
3. In the presence of four spines on the posterior margin of the

[^4]terminal segment. In A. grimuldii the posterior margin is rentionlate. In our species it is denticulate, and also bears four spines.

Family [V. (OORALLANID.E.
3. CORALLANA Dana.

7. CORALLANA TRUNCATA, new species.

Body elongate, about three and a half times longer than wide; color, yellow.

Head with a small median point. Eyes large, situated but a little distance apart. First pair of antome, with a flagellum of abont nine articles, extend to the antero-lateral angle of the first thoracic segment. Secoml pair of antemas broken in specimen.

First segment of the thorax is as long as the head, and about one and a half times longer than any of the other segments. Epimera of the second and third segments narrow; those of the remaining segments very brome.

The first abdominal segment is almost entirely coveren by the last fhoracic segment. The secoml, third, and fourth segments are tuberculated on their posterior margins. The fifth segment is also tubereulated, the tubercles on either side of the median line of tubercles being larger and more conspicnoms. At the base of the terminal segment are four tubercles, the two center ones being the larger. The terminal segment is subtriangular with truncate apex. The posterior margin is :mmed with spines. The inner branch of the uropoda is truncate postoriorly, and armed with spines; it is abont twice as broad as the onter branch, which is

FIG1. 4.-CORAI. IANA 'f IIUN "ATA. lild. a, HEAJ; b, AISJUMEN AN1) 1.AST TIOI:ACIC BLGGIMENT. lanceolate in shape.

There is but one specimen, from Catalina Island, California; collected by I)r. J. G. Cooper.

Fiamily V. NE(iID)N.

a. Body rather compact. Snperior intennes short, with fist two pednucular joints mose or less expandud. lipistome large, lingniform, projecting botween the bisses of inferiop antenna. Maxilliperls with pilp eomposed of live joints. Auforior pairs of logs with proporlus simplo, eylindrieal, notoxpanded, dactylus abruptly curved in middls. Front separating the whole or a ereat jart of the first article of the first pair of antennar. Flatellum of first pair of antemata composed of many articles. Abdomen compact.
6. Tignt.
a^{\prime}. Body more depressed than in Lifa. Snperior antenne short, with basal joints not expanded. Epistome very small and narrow. Maxillipeds with palp composed of only two joints. Auterior pair of legs with propodus more or less expanded, dactylus forming a very large and evenly curved hook. Frout covering more or less the peduncle of the first pair of antenna. Flagellum of first pair of antenne composed of fonr to sixarticles. Abdomen relaxed.. 7. Rocinela.

B. AGGA Leach.

ANALYTICAL, KEY TO SPECIES OF NEGA.

a. Eyes very small; second joint of first pair of antenne without process at its apex; terminal abdominal segment triangular, with ronnded apex; inner brauch of uropoda with apex faintly arcuate obliquely.
8. E'ga microphthalma Dana.
a^{\prime}. Ejes almost contiguous; second joint of first pair of antenna with a process at its apex nearly as long as following joint; terminal abdominal segment with its apex arcuate-truncate; inner branch of uropoda subtruncate.
9. AEfa lecontii (Dana).

8. ÆGA MICROPHTHALMA Dana.

F!fa microphthalma Dana, Proc. Acad. Nat. Sici. Phila., VII, 18: 1, p. 176.-Stimpson, Jonrn. Bos. Soc. Nat. Hist., VI, 1857, p. 68.
Hulitut.-Monterey, California.

9. ÆGA LECONTII (Dana).

Tigacylla lecontii Mana, Proc. Acad. Nat. Sci. Phila., VII, 1854, p. 177.—Stimpson, Jonrn. Bos. Soc. Nit. Hist., VI, 1857, p. 69.
IIabitut.-California.
Body elongate, oval; surface smonth; color yellow, with a few brown dots; eyes reddish brown.

Head with anterior margin bisinuated, the median point separating the basal joints of the first pair of antenne and extending one thind the length of these joints. Eyes large, oval, very close to-

 contll (Dana). $\times 2$. gether at upper inner angle. First pair of antemne with basal joints very large, dilated; second joint of pedmucle dilated, aud with a process at its apex extending nearly the length of the third joint; third joint very narrow, about one-third the width of two preceding joints; flagellum, composed of seven joints, extends the length of the peduncle of second pair of antenne. Second pair of antemur, with a flagellum of twelve joints, extend almost to the posterior margin of the first thoracie segment.

The last four thoracic segments are each a little longer than any of the first three. The epimera are narrow, with rounded post lateral angles.
The five abdominal segments are of equal length. The terminal segment is subtriangular with truncate extremity; its posterior margin is cremmate and fringed with hairs. The uropoda exceed slightly the length of the abdomen. The inner branch
is about twice as wide as the outer branch; is obliquely truncate, and crenulate. The outer branch is narrow, rounded posteriorly, and smonth. Both branches are fringed with hairs.

The legs are long and slender. Five spines are present on the merus of the prehensile legs. The gressorial legs are but slightly spinulose.
Two specimens examined were collected at Monterey Bay, California, by Mr. Heath.
The description of this species of Wga by Dana as , Fgacylla lecontii was from a young specimen. ${ }^{1}$ The individual sent us is thought to be the adult form, and differs from Dana's description ${ }^{2}$ of the young individual in the cremulated posterior margin of the terminal segments, in the truncated inner branch of the uropoda, and in the addition of two joints to the length of the flagellum of the second pair of antenne.

7. ROCINELA Leach.

analytical, key to specien or bocinela.

a. Flagellum of second pair of antenus with fonsteen to sixtern joints.
b. Propodus of prehensile legs with two to four spines.
c. First thoracie segment with antero-lateral angles produced hornlike at sides of head. Frontal margin of head produced. Spots wanting on fourth and fifth abrominal segments and base of terminal segnient.
10. Liocinela cormuta Richardson.
c^{\prime}. lirst thoracic segment normal. Frontal margin of head not prodnced. Spots present on forrth and fifth abrlominal segments and hase of terminal segment.. 11. liveinela belliceps (Stimpson).
b^{\prime}. Propodus of prehensile legs with five or six spines.
12. Rocinela laticawla IIansen.
a^{\prime}. Flagellnm of second pair of antennae with ten to eleven joints.
b. Tubercles developed on all the segments of the body.
13. Rocincla tuberculosa Riehardson.
b^{\prime}. No tubercles developed on body. Terminal segment of body rinannented with a. very wide crescentiform band, from whose posterior border three large hastiform stripes project backwards.
14. Rocinela aries Schiodte and Meinert.
10. ROCINELA CORNUTA Richardson.

Rocincla cornuta Ricmarison, Proc. Am. Phil. Soc., XXXVIl, 1898, p. 12, figs. 1, 2.
Habitut.-Off Shumagin Bank, Alaska.
r1. ROCINELA BELLICEPS (Stimpson).
Aga belliceps Stimpson, Proc. Acal. Nat. Sci. Phila.; XVI, 1864, p. 155.
Jiga alaskensis LockingTon, Proc. Cal. Acad. Sci., VII, 1877, Pt. 1, p. 46.
Rocinela alascensis Richardson, Proc. Am. Phil. Soc., XXXVII, 1898, p. 11.

[^5]Mabitat.-Cortes Bank, California, to Alaska and Bering Sea.

12. ROCINELA LATICAUDA Hansen.

Rocinela laticaula Hansen, Bull. Mus. Comp. Zool., XXXI, 1897, No. 5, pp. 108, 109.-Ricilarinson, Proc. Am. Pliil. Soc., XXXVII, 1898, pp. 14, 15, figs. 5, 6.

Habitat.-Off Acapulco; near Tres Marias Islands; off Mazatlan; off San Luis Obispo Bay, California; off Esteros Bay, California; Puget Sound, Washington; Unimak Island, Alaska.
13. ROCINELA TUBERCULOSA Richardson.

Rocincla tuberchlowf Richambson, Proc. Am. Phil. Soc., XXXVII, 1898, p. 16, fig. 10.

Habitat.-Sonthern part of Culf of California.

Fig. 6.-Rocinela belliceps (Stimpson). $\times 2$.
${ }^{14}$ 14. ROCINELA ARIES Schiœdte and Meinert:
liocinela aries Schicede and Meinert, Natmrhistorisk 'Tidsskrift, XilI, 1879-80, llp. 101-403, pl. xuif, figs. $7,8$.

Mabitut.-Mazatlan; Lower California; Panama Bay.

Family VI. CYMOTHOIDA.

ANALYTICAL KEY TO TIE GENERA OF CYMOTIOID.E.
a. Head deeply immersed or set in the first thoracie sogment, whose antero-lateral angles project forward.
b. Abdouen deeply immersed.

First pair of antenne more often dilated, rarely compressed. First fonr or five segments of body long, suberual in length, except the first, which is a little longer; last two or three segments abruptly shorter, very often decreasing gradually in length. Terminal segment of abdomen subtriangular or semicircular, often bilobed. Body oblong
8. Meinertia.
b^{\prime}. Abdomen scarcely immersol.
First pair of anteme very much compressed. Sugnonts of thorax either erpual in length or the first segment abruptly longer than the othors and the last segment abruptly shorter than tho others. Terminal sogment of tho abdomen varying in size and form. lody sub-oval, more or less contorted. . . Livoneca. a^{\prime}. Heal not at all immerserl.
b. Body relaxed. Posterior angles of tirst sogment of body prominent or produced, very often acuto; posterior angles of the following regmonts increasing gradually in length, tho first of these very often searely prominent, the posterior ones very often poduced, abruptly longer than the first. Epimera of the first segments very often involnted, and oxtending losyond the postorior anglo of the segment; posterior ones produced, acnte. Niles of the first five segments of abdomen more or less profoundly incisod..... 11. Nerocila.
b^{\prime}. Body compact. Posterior angles of tirst sogment of body scarcely prominent, occasionally prodnced, those of following live sogments scarely or not at all prominent; those of seventh segment prodnced. Bpimera of first segments very often almost reaching, or not reaching hy a short distance, the posterior angle of the segment. Sides of the first segments of the abdomen, whole or obsenrely emarginated, of the posterior ones gradually more profommdy emarginated or incised
11. Amilocra.

8. MEINERTIA Stebbing.'

15. MEINERTIA GAUDICHAUDII (Milne-Edwards).

Cymothoa gaudichaudii Milne-Edwards, LIist. Nat. Crust., III, 1840, 1. 271.
Ceratothoa rapax Heller, Reise Noraru Crust., XII, 1. 116, fig. 17.
Ceratothoa gaudichandii SCH1@DTE and Meinert, Naturhistorisk Tidsskrift, XIlI, 1881-83, pp. 335-340, pl. xifl, figs. 11-15.

Mabitat.-Mazatlan.

9. LIVONECA Leach.

ANALYTICAL KEY TO SJECLEN ()F LIVONECA.
a. Terminal segment olosenrely earinated, and sides onfolded. Caudal appendages destitute of accessory lamellie...16. Lironera californica Schimelto and Meinert. \boldsymbol{a}^{\prime}. Terminal segment not carinated, sides not onfolded. Cindal ilpendages furnished with arcessory limellie.
b. Inner branch of uropoda a little longer and wider than onter branch. 'Terminal segment sublinguate. Abdonen doeply set in thorax.
17. Lironece rnlqaris Stimpson.
b^{\prime}. Inner branch of uropoda a little longer and nuch narrowor than onter branch. Terminal segment semicircular. Abdomen loss deeply inserted in thorax.
18. Liconeca panamensis Schiarlte and Meinert.

16. LIVONECA CALIFORNICA Schiœdte and Meinert.

Lironeca californica Schifedte and Meinert, Naturhistorisk 'Tidsskrift, XIV, 1883-84, pp. 372-374, pl. xv1, figs. 1, 2.

Habitut.-Shores of California, near San Francisco.
${ }^{1}$ Hist, of Crust., 1893, 1. 345.
17. LIVONECA VULGARIS Stimpson.

Livomeca rulguris Stimpson, Jomrn. Jos. Sor. Nat. Hist., XXII, 1857, p. 68, pl. XXI, fig. 9.-Schuedte and Mernert, Naturhistorisk 'Tirlsskrift, XIV, 188:3-84, pp. 344-34! , pl. ג1v, figs. 1, 2.
Hubitat.-Shores of California, near San Francisco, to Santa Margarita Island, Lower California.
18. LIVONECA PANAMENSIS Schiœdte and Meinert.

Livoneca panemensis SCumedte and Mennert, Naturhistorisk Tidsskrift, XIV, 1883-84, pp. 349-353, pl. ג11, figs. 11, 12.
Hubitat.-Mazatlan; west shores of Central America; Panama.

10. NEROC1LA Leach.

19. NEROCILA CALIFORNICA Schiœdte and Meinert.

Nerocila californica Scmedete and Meinert, Naturhistorisk Tidsskrift, XII, 1881-83, pp. 72-76, pl. v, figs. 12, 13; pl. vi, figs. 1, 2.
Habitat.-San Diego, California; Panama Bay.

11. ANILOCRA Leach.

20. ANILOCRA OCCIDENTALIS, new species.

Body two and one-half times longer than broad.
Heal large, broader than long, one-half as broad as the first thoracic segment, produced in front in a short, blunt process, whose anterior edge is roundly truncate. Vyes large, situated at a

Fig. 7.-Anilocra OCCIDENTALIS. $\times 4$. distance equal to almost half the width of the head apart. The first pair of antenne are composed of eight joints and extend to the middle of the first thoracic segment. The second pair of antennie are composed of nine joints and extend to the posterior angle of the first thoracic segment; they are more slender than the first pair of autenne.
The first thoracic segment is trisinuated on its anterior margin, and is one and a half times longer than the second thoracic segment. The other segments are subequal. The sixth and seventh segments are somewhat narrower than the fifth, and the seventh is a little narrower than the sixth. All the epimera are long and narrow and more or less rounded posteriorly; they extend fully to the posterior angle of their corresponding seg. ments, a character not found in any other species of the genus.
The first abdominal segment is partly covered at the sides by the last thoracic segment. The first five segments are about equal in length and width. The terminal segment is slightly wider than long, equal in length to the other abdominal segments taken together, is impressed at the base, and posteriorly rounded. The uropoda are
longer than the last abdominal segment. Both branches are similar in shape and size; they are oarlike, with truncately rounded extremities.
The legs increase slightly in length. The basis of all the legs is carinated on the inferior margin.
Color a light brown, marked with numerous black dots over the whole surface of the body, with the exception of the posterior half of the last abdominal segment and the inner branch of the uropoda, which are a light clear yellow without spots. The outer branch of the uropoda, which is almost black, contrasts in a marked degree with the light inner branch. In the caudal segment the change from the darker to the lighter half is graduated, making the contrast less marked.

Two individuals of this species were taken; one by the U. S. Fish Commission steamer Albatross, station 3135, at a depth of 19 fathoms, and one by Dr. D. S. Jordan, both at Monterey Bay, California. One was imperfect.

Type.-No. 22567 , U.S.N.M. Monterey Bay. Depth, 19 fathoms.
When compared with A. leris Miers' fiom Pern this species differs in the shape of the anterior portion of the head, which in A. leris is narrowed and rounded, while in A. occidentalis it is trmeate; in the greater length of the first thoracic segment and the equality in length of the succeeding segments in A. occidentatis, while in A. laris the sixth segment is the longest, the others being of nearly equal length; in the length of the epimera, which in I. occillentalis attain the posterior margin of the correspouding segments, while with A. levis they are all very small and somewhat spiniform in the fifth to the seventh segments; in the greater breadth posteriorly of the terminal segment of the body in A. levis, and in the shape and length of the uropoda in the two species, the two branches being of unequal length, lamellate in shape (the inner one the longer), and both shorter than the last segment of the body in A. levis, while in A. culifornica they are equal in length, similar in shape, oarlike, and longer than the terminal segment.

Family VII. SPHAROMIDA.

[^6]12. DYNAMENE Leach.

ANALYTICAI, KEY TO TUE SPECIES OF IVNAMENE.

a. Frontal margin of head produced in a quadrangular process; first two joints of first pair of antennin dilated
21. Dymamene dilatata, now speeies.
a^{\prime}. Frontal margin of heal not produced; joints of first pair of antenme not dilated.
b. Abdomen tuberculated. Neither branch of mopoda reaching extromity of abdome:l
.22. Dупатенс tuburulosa, new species.
b^{\prime}. Abdomen not tuberculated. Imer branch of uropoda reaching extremity of abdomen.
c. Ultimate segment of ablomen ridged. Branches of uropoda of equal length. Simus at extremity of abdomen funnel shaped.
23. Dynamone benedicti, now species.
c^{\prime}. Ultimate sogment of abdomen smooth. Outer branch of wropoda but little more than laalf as long as imer hranch. Sinus at extremity of abdomen small
24. Dymamene glabra, new specios.

It has been suggested by several anthors' that Dynumene may prove to be the female of Nosa, but until facts can be produced to substantiate this assumption, it is necessary to retain the genus Dymamene.

21. DYNAMENE DILATATA, new species.

Body oval; surface very gramular; color yellow.
Head rugose, with its anterior margin produced in a quadrangular

Fig. 8.-Dynamene dilatata. a, head and first thoracic SEGMENT. $\times 13 \frac{13}{3} . b$, DORSAL VIEW. $\times 10$. process, having a small median projection, romuded antero-lateral angles and a thickened edge. First pair of antenne extend to the posterior margin of the liead, first two joints flattened and enlarged; first joint oblong, second joint triangular, and half as long as preceding joint; third joint small, as long as seeare short, not reaching the extremity of the abdomen, and regnlarly rounded.

The legs are slender; the first two pairs are covered with long hairs,

[^7]and extend in an anterior direction, the other five pairs extend in a pos. terior direction.

The type and only specimen was collected by Mr. Heath at Monterey Bay, California, at the surface. No. 22568, U.S.N.M.
22. DYNAMENE TUBERCULOSA, new species.

Body oblong-ovate; color, light yellow, almost white; surface of abdomen tuberculated.

Head large, much broader than long, with a wide anterior margin, broadly curving on either side of a small median point. Eyes small, and situated at the oxtreme post-lateral angle of the head. The first pair of antennar, composed of eight articles, reach beyond the middle of the first thoracic segment. The second pair of antenne, composed of twelve articles, extend to the posterior angle of the first thoracic segment.

The first segment of the thorax is one and a half times longer than any of the other segments, which are about equal in length. The epimera, which are distinctly marked, and roundly produced at their posterior angles, are much broarler than long.

The first abdominal segment is transversely crossed by three suture lines, indicated at the sides of the segment. Three small tubereles are sitnated in a transverse line on the posterior margin of this segment. The terminal segment is subtriangular in shape with a broad funnel-like excavation at its extremity, formed by the infolding of the lateral edges. The anterior part of the terminal segment is very convex, upon which elevation are situated three large tubercles in a transverse row, the center one being in the median line. At the base of the teminal excavation is also a small tuberele. Both branches of the uropoda are similarly shaped, being of the same width thronghout their entire

Hif. 9.-Dynanene tUBERCULOSA. $\times 8 . a$, DORSAL VIEW ; b, LAT. eral view. length and romded posteriorly. The outer branch is somewhat shorter than the inner branch; neither reach the extremity of the abdomen.

Individuals were found at Gualala, California, on Haliotis rufescens, by Dr. R. E. U. Stearns; also, one specimen at Catalina IIarbor, California, and one at Popoff Islaurl, Aleutian Islands, at low water, by Mr. W. H. Dall.

Type.-No. 22569, U.S.N.M. Popoff Island, A leutian Islands.

[^8]Body oblong, oval; surface minutely granular; color, dark gray.
Head with small median point. Eyes situated post-laterally. First pair of antemae cxtend to the middle of the first thoracic segment; first joint of peduncle longest; second and third joints about equal in leugth; flagellum contains six joints. Second pair of antennee extend to the posterior margin of the second thoracic segment; flagellum contains about eleven joints.

Fig. 10.- Dinamene BENEDICTI. $\times 13 \frac{1}{3}$. Last thoracic seg. MENT AND ABDONEN.

The thoracic segments are of equal length. The epimera are square with rounded posterior angles.

The penultimate abdominal segment is crossed by suture lines, indicative of coalesced segments. The terminal segment is triangular, terminating posteriorly in two teeth separated by a narrow, rounded, funnel-shaped sinus. This segment is very convex, and bears two longitudinal ridges on either side of the median line. The uropoda do not exceed in length the extremity of the terminal segment. Both branches are rounded posteriorly and are similar in shape and size.

The type was collected by Mr. Meath at Monterey Bay, California, at the surface. No. 22570 , U.S.N.M.
24. DYNAMENE GLABRA, new species.

Body oval; surface smooth.
Head small; eyes sitnated post-laterally. First pair of antennx extend to the eye; first joint oblong; second joint short, half as loug as first; flagellum contains six articles. Second pair of antennæ extend to the posterior margin of the first thoracic segment; flagellum contains about teu articles.

Thoracic segments are subequal; the first is a little longer than any of the others.

The penultimate abdominal segment consists of several coalesced segments, as indicated by the suture lines. The terminal segment is triangular, with a small median excavation atits extremity. The lower part of this segment is quite flat, the slope being gradual from the convex upper part or base of segment to the extremity. The inner branch of the uropoda is large and

Fig. 11.-Dynamene GLABRA. $\times 13 \frac{1}{3}$. ABDOMEN AND LAST TWO THORACIC SEGMents. rounded posteriorly; the outer branch is small, though similar in shape, and is much shorter than the inner branch.

A number of specimens were collected by Mr. Heath at Monterey Bay, California at the surface.

Type.-No. 22571, U.S.N.M.

13. SPH $\notin R O M A$ Latreille.

ANALYTICAL KEY TO THE SPECIES OF SPIIEROMA.
a. Body widening gradually from head backwards. Thorax transversely ridged and provided with three longitudinal rows of small tubercles. Branches of the uropoda very large, expanded 25. Spharoma amplicauda Stimpson. a. Body not increasing in wilth. Surface of thorax smooth. Branches of the nropoda not expanded.

1. Extremity of abdomen produced in a rhomboid process.
2. Spharoma rhomburum, new species.
b^{\prime}. Extremity of abdomen not produced.
c. Surface of ablomen tubercular
3. Sphuroma octoncum, new species.
c^{\prime}. Surface of abdomen smooth 28. Spheroma oregonensis Dana.

25. SPHÆROMA AMPLICAUDA Stimpson.

Spheroma amplicauda Stimpson, Proc. Bos. Soc. Nat. Hist.. VI, 1857, p. 89.
Habitat.-Tomales Bay, California.
Stebbing ${ }^{1}$ suggests that a new genus near Cycloidura may be required for this species.
26. SPH ÆROMA RHOMBURUM, new species.

Surface of body punctate; color, whitish yellow.
Head small. First pair of antenne reach almost to the posterior margin of the first thoracic segment. Second pair of antennæ extend quite to the posterior margin of the first thoracic segment. Eyes situated postlaterally.

Thoracic segments equal in length. Epimera broad and short, extending downwards, forming an angle with the segments.

First abdominal segment as long as any of the thoracic segments, crossed by suture lines and

Fig. 12. - Spheroma RHOMBURUM. $\times 13 \frac{1}{3}$. Abdomen. surmounted by two tubercles, close together, one on either side of the median line. Terminal segment with its extremity produced in a process rhomboid in shape, and with sides infolded, forming a kind of funnel-like opening when seen from beneath. At the base of this segment are two tubercles, which are continuous with two longitudinal ridges in the center of the segment. These ridges unite near the extremity, and continue as one median ridge. The uropoda are shorter than the terminal segment; the outer branch is more lanceolate in shape; both are of equal length.

Two specimens were taken at Monterey Bay, California, by Mr. Heath.

Type.-No. 22573, U.S.N.M.
This species is near S. egregium Chilton ${ }^{2}$ from Aliaroa, but differs in

[^9]the presence of two tubercles on the first abdominal segment, in the presence of two tubercles and two longitudinal ridges uniting in a single ridge on the terminal segment, and in the equality in length of the two branches of the uropoda.

27. SPH ÆROMA OCTONCUM, new species.

Body with all the thoracic segments, except the first, marked with four conspicuous brown spots, two on either side of the median line, and with two spots on the first abdominal segment, one on either side of the median line.

Head small. First pair of antenne reach almost to the posterior margin of the first thoracic segments. Second pair extend fully to the posterior margin of the first segment.

Thoracie segments subequal. Epimera broad and extending downward, forming an angle with the segments.

First abdominal segment with two low tubereles close together, situated one on either side of the median line; terminal segment triangular, with apex narrowly rounded and sides

Fig. 13.-SPil.troma uctonCLM. $\times 13 \frac{1}{3}$. ABDOMEN. slightly infolderl, forming a small opening when seen from below. Six low tubercles are situated on this segment, two in longitudinal series on either side of the median line-the lower ones being a little farther apart than the upper ones-and one on either side of the series. The uropoda do not reach the extremity of the abdomen by some little distance. The outer branch is the shorter and is broadly romnded posteriorly. The inner branch is more pointed at the extremity.

Five individnals of this species were sent by Mr. Heath from Monterey Bay, California.

Type.-No. 22574, U.S.N.M.

28. SPH EROMA OREGONENSIS Dana.

Spheroma oregonensis Dana, Proe. Aead. Nat. Sci. Phila., VTI, p. 177; V.S. Expl. Exp. Crust., II, p. 778, pl. Lif, fig. 4.-Stmpoon, Journ. Bos. Soc. Nat. Hist., VI, 1857, p. 69.
Spharoma olivacen Lockington, Proc. Cal. Mead. Sci., VII, 1877, I't. 1, 1. 45.
Habitat.-Pacific Grove to Alaska.

14. TECTICEPS Richardson.

ANALYTICAL KEY TO THE SPECIES OF TECTICEPS.

a. Terminal segment of abdomen pointed. Outer branch of uropoda much longer than inner branch. First pair of antennce reach the posterior angle of the tirst thoracie segment. Second pair reach the middle of the second thoracic segment. Sixth and seventh pair of logs show a marked disproportion in the length of the propodus.
.29. Tecticeps alascensis Richardson.
a^{\prime}. Terminal segment of abdomen widely romded. Onter branch of the nropoda not longer than inner branch. First pair of antenne reach the posterior angle of the third thoracic segment. Second pair of antennar reach the middle of the fourth thoracic segment. Sixth and seventh pairs of legs show only a gradnal increase in length...........................30. Tecticeps convexus, new species.
29. TECTICEPS ALASCENSIS Richardson.

Tecticeps alasccusis Ricuarson, Proc. Biol. Soc. Washington, XI, 1897, pp. 181-183.
Habitat.-Alaska; Kamehatka.
30. TECTICEPS CONVEXUS, new species.

Body oval, somewhat flattened. Surface smooth; color light yellow with markings of brown.

Head with the anterior margin much broader than the posterior margin, produced in front but not wholly concealing the basal joints of the first pair of antenne, and somewhat raised, forming two small convex elevations. The antero-lateral margin is likewise produced forming an acute angular projection, which extends in a lateral direction beyond the post-lateral margin of the head. The eyes are dorsally situated in a median tranverse line. The first pair of antenne, with a flagellum of sixteen articles, extend to the posterior angle of the third thoracic segment.

Fig. 15.-Tecticeps convexus. a, head. $\times 5 \frac{1}{3} . b$, abdomen AND LASTVTHORACIC SEGMENT. $\times 2$ 2. The second pairof antenne, with a flagellum of thirteen articles, extend to the middle of the fourth thoracie

Fig. 14.-TeCticer's alasCENSil LilCItARDSON. $\times 24$. segment, and exceed by one joint the length of the first pair of antemie. l'oth pairs of antemme are disposed to lie concealed under the broad epimeral plates of the thoracie segments.

The thoracic segments are subequal in length. The first segment has its anterolateral angles produced around the anterior portion of the head, forming a broad plate at the side of the segment. The epimera are almost twice as broad as long; those of the fifth segment extend downward, with the anterior margin straight, making the length and breadth about equal, and forming almost square epimera; in the epimera of the sixth and seventh segments, the anterior margins are in the same direction as the posterior margins, which extend downward.

The first segment of the abdomen has three suture lines, and its posterior margin is produced in two small points, one on either side of the median line, about equidistant from it and the lateral margin of the
segment. The terminal segment is widely rounded posteriorly. The inner branch of the uropoda is of nearly equal width throughout its length and is ronded at its extremity; the outer branch is slender and sharply pointed. Both branches are of nearly equal length and neither extend beyond the tip of the abdomen.
The first pair of legs have the propodus dilated and the dactylus reflexible. The propodus is large and oval in shape. In the legs of the second pair the propodus is irregular in shape, sometimes dilated with reflexible dactylus, and sometimes simple. The legs of the other five pairs are similar in structure, ambulatory, and show a gradual increase in length.

A number of individuals were fonnd at Monterey Bay, California, and sent to the U.S. National Museum by Mr. Heath, who gives the following notes of their habits:
They were taken by the Chinese fishermen from a sandy sca bottom abont 30 feet below the surface (according to the Chincse statement). These are rapid swimmers and the moment they are disturbed they roll into a ball and project the exopodite of the last free segment. This is undonbtedly for protection. I have not had time to accurately cxamine the position nor character of this appendage, but its sharp swordlike nature is readily recoguized.

Type.-No. 24572, U.S.N.M.
This species differs from T. aluseensis in having longer antenna and antennule; in having a rounded terminal segment, which in that species is very pointerl; in having the outer branch of the uropods as short as the imner, which in that species is much longer; in having only a gradual increase in the length of the legs, which in that species show such marked disproportions in the propodus of the sixth and seventh pairs; and in the position of the eyes, which in this species are sitnated in the median transverse line of the head, while in T. claseensis they are placed in the posterior half of the head.

> 15. CILICAEA weach.

ANALYTICAL KEY TO THE SPECIES OF CII ICEA.
a. Surface of borly smooth.
b. 'Torminal segment with three sinuses, one above another, the two upper openings heart-shaped. Terminal segment as broad as long. Onter branch of the uropoda armed with four spines, broad and flat at upper end, and tapering to the extremity, which doos not reach beyond the tip of the abdomen.
31. Cilicala cordata, new species.
b^{\prime}. Terminal segnent with a large sinus, in which are placed six sharp tceth. 'Terminal segment nearly twice as broad as long. Onter branch of the nropoda smooth, slender, cylindrical, and reaching much heyond the tip of the abdomen 32. Cilica'a caudala gilliana, now subspecies. a^{\prime}. Surface of body densely granulated. 'Terminal segment with a quadrangular excavation, in the center of which is a long tooth.
33. Cilica: granulosa, new species.

The position of the three following speeies is somewhat donbtful, since they lack the spine on the penultimate abdominal segment, which
is characteristic of the genus Cilicerf. It has been noted by stebbing, ${ }^{1}$ by Miers, ${ }^{2}$ and by Haswell ${ }^{3}$ that with many species of Cilicrer, as well as with some of the other genera of the Spharomidtr, the spine is present and developed in the males but wanting in the females. As our three new speeies agree with the generic characters of Cilicoll except in the presence of the spine, we consider them for the present new and undescribed species of Cilicra.

31. CILICAEA CORDATA, new species.

Body attenuaterl in front; color a faint yellow, profusely marked with a delicate pink tint.

Head with the anterior margin thickened, and slightly produed in front. Prominent median point triangularly shaper. Frontal margin broadly lobed on either side of median point. Eye situated at post-lateral angle of head. First pair of antenma reach beyond the posterior margin of head; first joint of peduncle oblong; second joint very short; flagellum contains about nine articles. The second pair of antennie extend to the posterior angie of the third thoracie segment; the flagellum contains about fifteen articles.

The thoracic segments are about equal in length, with the exception of the first, which is a little longer than any of the others. The epimera are very broarl and drawn out to an apex, which is rounded. They are scarcely visible in a dorsal view, as they project downward laterally, forming an angle with the segments. The last thoracie segment is firnished with low tubercles on its posterior margin.

On the first abdominal segment are five double tubereles. The terminal seginent of the body has three sinuses, one above another, the two upper openings being heart-shaped. Six teeth are grouped in a veries of two each, and are placed in such

Jim. 16.- Culicati combata. $\times 8$. a, HEAD ANI) FHLST THORACIG SECT. MENT; b, HOK\&AL VIEW. regularity as to give the appearance of a triple sinus. At the base of the upper sinus is a large rounded tubercle, peaked at the top. Three double tubercles are also situated at the base of the abdomen. The inner branch of the uropoda is fixed and immovable; it is broal and pointed

[^10]at its extremity and rextomels I wo thirds the: Irngth of the terminal reg.
 above, momerounded amb tapering at the extremity, somewhat insinved, and extends a little beyond the end of the alodomen. Its outer edge

The legs ate long and slosder, all amblatory, and with daty yhas binnguiculate.
 Mr. W. II. Dall at low watce:

Another individaal was fomad at (Jatalina Istand, Californab, by I)s. J. (i. (Joconer. In this spectimen thes sixth thoracie segment is also tuberenlated. Onos npecimen was fomm by Mr. Heath at Monterey fay on the pink eoralline at low tide, and is shaded with at delieale pink. In this spesimen, on the seventh thomeis segment and tho jennltimate abdominal segement, the tubereles on either side of the median line of tubereles are single instesal of domble.

32. CIIICAEA CAUDATA GILI,IANA, new subspecies.

Boxly slightily attennated in front. (Jolor, light brown with markings of black.
 median point triangalaty shaped, on either side of which the fiontal maserin of the head is brondly lobed. liye sitanted

『'A! HATA WIt.l.1 ANA. <8. at the pesterior angle of the hosad. Virst patir of antemate reash beyond thes posterior margin of the locad; lisest joint of perlancle is ohlong ; speond joint, very sulall; tagellima contains cight joints. The second pair of anteanas are broken in the specemens oxamined.

The thomatic segmentes are abont equal in lengeth, with short lout very broad apimes: whish extend downward laterally, forming all angle with the segments. Ibe last segment is ridged with very low thbereles on its posterior margrin.

The lirst abdominal segment has two suture lines, indicative of coaleseed seements, and bears five domble toblereles. Tho torminal segment has a large simes in Which are sithated six sharp terth. At the base of the simm is a large tuberelo. 'Three donble tubereles are also fombl at the base of the terminal segment. The jumer batheh of the aroporat is aflixed to tho sides of the abdemen and extendes two. thirds of its longth; it is triangulanly pointed at its extromity. 'Tho outer batnoh is long and slemder, almost cylindrical in slapes, smonth, somewhat incorved, and extemeds monsh beyomel the tip of the terminad segment.

The logn, all ambulatory, are slender with dactylus manngnienate.

Speramens were dredged off Catalina Island, California.
Type.-No. 2:557ti, U.S.N.M.
'These sperejmens difler from Oilicern remdutu (Say), ${ }^{1}$ in the presence of six distinct tereth within the sims of the terminal segment, while in that sperejes there are bint four; in the greater development of the spine at the base of the simus, and in the median domble bobereles at the base of the terminal regment.
33. CHICAEA GRANULOSA, new species.

Surfaces of body densely grammbated; gramules large and elose together.

Head with anterior margin thiekened, and produced in a small median point, on either siele ol which the margin is lobed. Lyes situated postlaterally. Jiost pair of antembar extemel to the posterior marerin of the first thar racie segment; first joint of pedmalle, oblong; sexond joint, short. Second pair of antennes extend to the josterion margial of the third tharacie segment.

The first thoracies segment is longer than ally of the following segments. Thes epimerat are twice as broall as long.

The first abolominal segment is shortit and bears indications of thres coallesered segments. There are three transverse

 men. elevations on this segnent which are densely eovered with granules. The terminal segment bears thae fansverse elevations at the base, the median one terminating in a spine. On its posteriom margin is a quadrangular exeavation, with a long median tooth, bearing a spine at, its extremity. At the base of the tooth is a small elsvation. On either side of the terminal excavation, a short distance "p the lateral margin, is a small spine. 'The fixed immer branch of the uroporat is small amd sloort; the outer branch is long, blant at the extremity, somewhat incurved, and reaches, when open, mush beyond the terminal segment. The margins of the terminal segment, and the edges of the outer branch of the nropuda, are pubesseent.

The lege are all simple, ambulatory.
One specimen form Corvos Island, Lower California, was collertel by Mr. A. W. Λ nthony at a depth of 20 fathoms.

Type.-No. 22(;49, U.S.N.M.

${ }^{1}$ CIIJICAEA CAUDATA (Say).

 des Crustacer, JIJ, p. VI9.
 11-14.

Family VIII. SEIROLIDK.

18..SEROLIS Leach.

34. SEROLIS CARINATA Lockington.

Serolis carinata Lockinition, Proe. Cal. Acad. Sei., VII, 1877, P’t. 1, p. 36

IIabitut.-San Jiego, California.

Fig. 19.-Serolis carinata Lockington. $\times 8$.

III. VALVIFERA.

ANALYTICAL KEY TO TIHE FAMIIIES OF VALVIHERA.
a. Body more or less broad, depressed. Legs usually nearly alike, but first three pairs sometimes with propodus dilated and dactylus reflexed.

Family 1X. Inoteide (p. 842). a^{\prime}. Body narrow, scarcely depressed. Four anterior pairs of legs unlike threo posterior pairs, and not ambulatory, nor strictly prehensile, directed forward, slender, ciliated, with terminal joint minute; last three pairs are stonter, ambúlatory, with terminal joint bifid....... Family X. Ancturide (p. 853).

: Family IX. IDOTEDD A.

ANALYTICAL, KEY TO TIE GNNERA OF IHOTEID N: ${ }^{1}$

a. Sides of head emarginate or cleft and lateralls produced beyond eyes, which are situated upon its dorsal surface. Three anterior pairs of legs, with penultimate joint or propodus dilated and forming, with reflexible dactylus, a prehensile hand.
17. Glyptonotus.
a^{\prime}. Sides of head in a dorsal view entire and not laterally produced. Eyes lateral. Legs all ambulatory; three anterior pairs with penultimate joint not or not much diatad.
b. Flagellum of second pair of antenne well developed and multiarticulate.
c. l'alpus of maxillipeds four-jointed. Epimera of all the segments woll developed and evident in a dorsal view. Abdomen ${ }^{2}$ consisting of three ${ }^{3}$ segments with lateral sutures, indicative of another partially coalescent segment 18. Idotea.

[^11] naiarticnlato.
 [erfoetly unitorl with the segmonts
19. Synidotra.
 sogmendes cotaloscerl and perfectly muted with thes segmonts; those of thes fifth, sixth, and revonth segmonta dintinct and well dovelopred.
20. Colidoterf, Hew genlus.
 a singlo piece, or with liagellam remposed of only fwo or threo joints.
e. Berly smooth, limear. Bpimera of all tho thoracie nogmonte distinct and vis-

 maxillijods two-jointeal
21. Cleantis.
é. Boaly amooth, ovate. Epimera of mesomal, third, fonth, and fifth Horacies
 distinct and visible. J'alpof maxillipests lhror-jointed. dointes of flagel-

17. GLYPTONOTUS Eights.

 Antero-latosal corvical lobes prominent.....35), Vilyptonotus cmiomon (limatens).
 Antero-latoral corvieal lobos not pominent...36. (ilyplonotus subini (Ḱr申yer).

35. GLYPTONOTUS ENTOMON (Linnxus).

 Zool., IX, 1772,]. fif, pl. v, lign. 1-6;.

 H. XXXi」, lign. 1-10.

Ascllus entomon (havaris, Bheycl. Meth., 1789, 1. 25:3.
(\%) Symolhoa chtomon F'asmaciun, Jint. Syst., 11, 179\%, j. 505.

 7 13; Amm. Mag. Niuf. Jlist., VI, 1880, 1. !88.
(\%) Suduria entomon Abasss, in Whito, Suthorland's Voy. Baffin's Baty, ste., Appentix, 185, p, eovii.
Idolaga longicaula Lockso'von, Jroc. Cal. Abad. Sci., VII, 1877, Pt. 1, 1. 45.
(ilyplonolus miomon Mishs, 'Jrans. Lian. Soc: London, XVI, 188:3, [1. 12, 13, pl. 1, ligs. 1, 2. (Sors Miers for further kymonsyny.)

[^12][^13]
36. GI,YP'TONOTUS SAIBINI (Kroyer).

 1877, 1. : :5:
 1. 133.

Ilabilut. Vireampolar; west comst North Americ:a (Miers).

18. IDOTEA Fמbricius.

9. 'Tosminal megmond amargimalo at It, ratromily \qquad 37. Rloten remerale stimpent.
a'. J'orminal nommast sob cumarginato at its axtromity.
b. Berly alculore, limeser: filiform.
©. 'Torminal सegmont trancates at apox \qquad is. Idolea grarillima llana.

 (han middle. \qquad
\qquad

b^{\prime}. Body whlongeovate.
(. 'Jorminal negment rognlarly remmaled, wilh small modian point.
10. Idoled wosmeromalii Bramelt.

d2. Idoten wholonaiк limumat.
 ronperdiva megmosis.
r^{\prime}. Sidestof lhorax arenalas
11. Ditoter atenopra Bemoliot.

小. Jioter whilei stimpson.
12. IDOTEA RESECATA Stimpson.

 XVI, 188.3, p. It.
Ithbitut.-Straits duan de Finca, opposite Ford, Townsent, V:anconver Island; (inlf of Ceorgia, Oreas Laland; Pacitic (irove, Sim Pedro, and Monterey Bay, California.

38. IDOTEA GRACIILIMA Dana.

 XVI, 188:3, 1. :35.

In⿻bilut. - Califormia.

39．IDOTEA UROTOMA Stimpson．

Itrisilut．－I＇uret Somad．

40．IDOTEA RECTILINEATA Lockinglon．

 to Vinsenada，Lower Caifornia．

From an examination of sprecimens，this species，which Miers＇says is searcely to bo distingnishod from 1．orhotronsis batadl，is seron to be speeelfically distinct．It differs firom I ． achotrasis in the froportions of the body， I．rectilineala being more slender－abont， five times as long as borabl－while in I. orkotensis thes length is muly thres and ：a half times greater than the width；in thes relative length of the antemate to the body， aurl the proportions of the joints in the peduncle of the antemn：r，the antenntw in 1．ochotensis reaching only to the josito－ rior margin of the third thonacie sere－ ment（in all the specimens examined）thes joints of the perlumele hesing short and stont，while：in I．rectilimeala the antennas extend to the posterion margin of the fifth thomacie segment，the jointes of the predmele being long and slomder；in the form of the athterion materin of the head，the exeavat

 laルKINITON゚．く tion being dexper ：und wider in 1 ．rechi－ lincula than in I．wehotemsis ；in the shape of the linst，lhoracies segment， which in J ．orholensis is prodneed laterally and has the antero lateral angles trmeate，while in I．retilincale this segment is not，proloced athe has rommed amtero lateral angles；in the size of the epimera， which are mosh more slender in I．rectilineala than in I．orfolensis ；and in the shape of the terminal segment of the body，the perstrion angle of which in I．orfolemsis is more as：nle，the line from the lateral angle to the median angle bering exeavate，while in I revtiliurede this line is straight and the merlian amgle ohtuse．

41. IDOTEA WOSNESENSKII Brandt.

Idotea uosncsenskii Brandt, Middendorf's Sibirische Reise, II, 1851, Crust., p. 146.-Stimison, lBos. Journ. Nat. Hist., VI, 1857, p. 504.-Spexce Jate, Lord's Naturalist in British Colımbia, II, 1866, p. 281.-Mers, Journ. Linn. Soc. London, XVI, 1883, p. 40.
Idotea hirtipes Dana, Cr. U. S. Expl. Exp., I't. II, 1853, p. 704, pl. xlvi, fig. 6.
Idotea oregonensis Dana, Proc. Aeal. Nat. Sci. Phila., VII, 1854, 1. 175.
Idoten media (Dana?) Spence Bate, Lord's Naturalist in British Columbia, II, 1866, p. 282.

Habitat.—Sea of Ochotsk and Kamchatka Sea; west coast of North America to Monterey Bay, California.
42. IDOTEA OCHOTENSIS ${ }^{1}$ Brandt.

Idotca ochotensis I'randt, Middendorf's Sibirische Reise, II, 1851, Crnst., p. 145, pl. vi, fig. 33.-Miers, Jolirn. Linn. Soc. London, 1883, XVI, p. 32, pl. i, figs. 8-10.
Habitut.-Awaatsch Bay, Sea of Ochotsk; northwest coast of North America to Vancouver Island (Miers).

Fig. 2l.-Idotea ochotensis Brandt. $\times 2$.
43. IDOTEA STENOPS Benedict.

Ifotea stemops Benedict, Proc. Biol. Soc. Washington, XII, 1898, pp. 54, 55.
Mabitut.-Monterey, California.
44. IDOTEA WHITEI Stimpson.

Idotea whitei Stimpson, Proc. Acad. Nat. Sci. Phila., 1864, p. 15\%-Mers, Journ. Linn. Soc. London, XVI, 1883, pp. 42, 43.

[^14]Habitat.-Puget Sound; Monterey Bay, California, collected by Mr. Heath.

A specimen from Monterey Bay, California, agrees with Miers's description of two males received from California, which he refers to this species. It is unlike Illoter wosnesensliii in the following points, and from an examination of a large number of individuals of I. wosnesensliii, in which these points remain constant, it seems to demonstrate the impossibility of uniting the two species.

1. "Form of epimera of secoud to fourth thoracic segments, which reach quite to the postero-lateral angles of these segments.
2. "Epimera of the second segment are broader anteriorly, and the terminal segment more resembles that of I. ochotensis, being more angulated and less rounded at the postero-lateral angles." ${ }^{1}$
3. The absence of hairs on the legs.

The legs of I. wosnesenskii (the males) are thickly covered with hairs and very bushy in appearance.
4. The smooth margins of the epimera, which in I. wosnesenskii have thickened edges.

19. SYNIDOTEA Harger.

ANALYTICAI, KEY to the species of synidotea. ${ }^{2}$

a. Abdomen emarginate or notched at its distal end.
b. Two spines or tubercles overhanging the frontal notch.
c. Spines united near the base
45. Symidotea pallida Benedict.
c^{\prime}. Tubercles free at base.
46. Sumidotea erosa Benedict.
b^{\prime}. No spines or tubercles overhanging frontal noteh.
c. With a low ridge arising between the eyes, and interrupted on the median line.
d. Outlines of abdomen subparallel........... 47. Synidotea nebulosa Benedict.

- d' Outlines strongly arcuate

48. Synidotea angulata Benedict.
c^{\prime}. Without a ridge between the eses.
d. Ontline of abdomen subtriangular.
e. Front not excavated....................4. Synidotea consolidata (Stimpson).
e^{\prime}. Front excavated Symidotea bicuspida (Owen).
49. Synidotea bicuspida (Owen).
d^{\prime}. Outlines of abdomen rounded.
e. Length of abdomen erual to width at base.
50. Synidotea laticauda Benedict.
e^{\prime}. Length of abolonen equal to one and one-half times width at base.
51. Synidotea harfordi Benedict.
a^{\prime}. Abdomen pointed.
b. Undulations of body not tubercular or spiny.
c. Tuberele in front of eyes not margined...... 53. Synidotea nodulosa (Krøyer). c^{\prime}. Tubercle on the frontal margin and forming a part of it.
52. Synidotea lavis Benedict.
b^{\prime}. Undulations of the body tuberenlar and spiny.
c. Four spines on the front of the head; body spinous.
53. Synidotea muricata (Harford).
c^{\prime}. A wedge-sliaped tuberele behind the frontal noteh; body tubercular.
54. Synidotea picta Benedict.
[^15]Mr. Adrian Doilfus in his paper on "Les Idoteidar des Côtes de France,," has wrongly confounded Synidotea Harger with Stenosoma Leach. Synidoter can by no means be considered a synonym of Stenosoma, as anyone who is familiar with the two genera will undoubtedly admit. It differs from Stenosoma in the consolidation of the epimera with the segments. The epimera are firmly and perfectly united with the segments, and the only trace or indication of a separation is represented in the anterior segments by a slight and almost imperceptible notch in the posterior margins, halfway between the lateral margin and the median line of the body, and in the three posterior segments by a very faint line. In Stenosoma all the epimera are very distinct from the segments.
45. SYNIDOTEA PALLIDA Benedict.

Synidotea pallida Benedict, Proc. Acarl. Nat. Sci. Phila., 1897, pp. 396, 397.
Habitat.-Chirikof Island, Alaska.
46. SYNIDOTEA EROSA Benedict.

Synidotea erosa Benedict, Proc. Acad. Nat. Sci. Phila., 1897, pp. 397-399.
Habitat.-Sannakh Island, Alaska.
47. SYNIDOTEA NEBULOSA Benedict.

Synidotea nebulowu Benedict, Proc. Acad. Nat. Sci. Phila., 1897, 1יp. 394, 395.
Halitat.-Unalaska; Kyska Harbor; Semidi Islands; Unimak Island; Bering Sea; Kanchatka.
48. SYNIDOTEA ANGULATA Benedict.

Synidotea an!!ulata Benedict, Proc. Acad. Nat. Sci. Phila., 1897, pp. 395, 396.
Habitut.-Off Cape Johnson, Washington; off' Destruction Island, Washington; off Cape Flattery, Washington.
49. SYNIDOTEA CONSOLIDATA (Stimpson).

Idotet consolidata Stimpson, Proc. ('al. Acad. Sci., I, 1856, 1. 89 ; lhos. Journ. Nat. Hist., VI, 1857, 1. 503.
Edotia bicnspida Mners, Journ. Linn. Soc. Lonclon, XVI, 1883, p. 66.
S゙ynidotea consolidata Benenict, Proc. Acarl. Nat. Sci. Phila., 1897, 1. 393.
Habitat.-Pacific Grove, California.
50. SYNIDOTEA BICUSPIDA (Owen).

Idotea bicuspida Owen, Crustacea of the Blossom, 1839, p. 92, pl. xxvir, fig. 6.
Idotea pulchra lockington, Proc. Cal. Au:id. Sci., VII, 1877, p. 44.
Idoted biruspida Melis, Journ. Liun. Soc. London, XVI, 1883, 1. 66.
Syuidotca bicuspida Sales, Crnst. Norwegian North Atlantic Experition, 1885, p. 116, pl. x, figs. 24-26.-Benedict, Proc. Acad. Nat. Sci. I'hila., 1897, pp. 391, 392 .
Habitat.-West coast of Alaska and Bering Sea.

[^16]51. SYNIDOTEA LATICAUDA Benedict.

Synidotca laticauda Benedict, Proc. Acad. Nat. Sci. Phila., 1897, pp. 393, 394.
Habitat.-San Francisco Bay.
52. SYNIDOTEA HARFORDI Benedict.

Idotea marmorata Harford, Proc. Cal. Acad. Sci., VII, 1877, 1. 117.
Synidotea harfordi Benedict, Proc. Acad. Sci. Phila., 1897, 1. 402.
Habitat.-Magdalena Bay, Lower California.
53. SYNIDOTEA NODULOSA (Kr申yer).

Idotea nodulosa Krøyer, Naturhist. Tidssk., II, 1846, p. 100.
Synidotea nodulosa Harger, Report of U. S. Commissioner of Fish and Fisheries, 1878, Pt. 6, pp. 351, 352.—Benedict, Proc. Acad. Nat. Sci. Phila., 1897, pp. 398, 399.
Habitat.-Dixon Entrance, north of Queen Charlotte Islands, British Columbia.
54. SYNIDOTEA LÆVIS Benedict.

Synidotea levis Benedict, Proc. Acad. Nat. Sci. Phila., 1897, pp, 399, 400.
Habitut.-Between Bristol Bay and Pribilof Islands, Alaska; Bering Sea.

Fig. 22.-Maxilliped of Colidotea nostrata (Benedict).
55. SYNIDOTEA MURICATA (Harford).

Idotea muricata Harford, Proc. Cal. Acad. Sci., VII, 1877, Pt. 1, p. 117. Synidotea muricata Benedict, Proc. Acad. Nat. Sci. Phila., 1897, p. 400.

Habitat.-Icy Cape.

56. SYNIDOTEA PICTA Benedict.

Synidotea picta Benedict, Proc. Acad. Nat. Sci. Phila., 1897, pp. 401, 402.
Habitat.-Alaska and Bering Straits.
20. COLIDOTEA, ${ }^{1}$ new genus.
57. COLIDOTEA ROSTRATA (Benedict).

Idotea rostrata Benedict, Proc. Biol. Soc. Washington, XiI, 1898, pp, 53, 54.
Habitat.-San Pedro, California.

[^17]Proc. N. M. vol. $x x i-5 \pm$

21. CLEANTIS Dana.

ANALYTICAL KEY TO THE SPECIES OF CLEANTIS.

a. Flagellum consolidated and forming a single piece. Sides of ablomen not separated ly an acute tooth from rounded posterior portion.
58. C'Teantis occidentalis, new species.
a^{\prime}. Flagellum composed of three joints. Sides of abdomen separated by an acute tooth from romuded posterior portion. \qquad 59. Cleantis healhii, new species.
58. CLEANTIS OCCIDENTALIS, new species.

Body narrow, elongate; surface smooth.
Head of same width as thoracie segments, and with a small, median anterior depression. Eyes lateral. First pair of antemne consisting of four joints, reaching the middle of the third

Fig. 23.-Cleantis occidentalis. $\times 10$. joint of the second pair of antennte. Second pair of antenne contain six joints (five seen from a dorsal view), the last joint being the flagellum.

The thoracic segments show a gradual, though marked, decrease in length, the first one being the longest and somewhat excavate on its anterior margin. The epimera of the second, third, and fourth segments are short and narrow, reaching but laalf the length of the segments, while those of the last three segments are broad, with their posterior angles pro duced beyond the segments.

The abrlomen is composed of four segments, three short ones and the terminal segment, which bears suture lines indicative of another coalesced segment. The terminal seg. ment is rounded posteriorly. The anterior three-fourths of the segment is raised considerably above the posterior fourth, which is flat, and there is a groove in the median line on the posterior third of the anterior part of the segment.

The legs are similar to those of the type species of the

Fig. 24. - Maxilhifed of Cleantis OCCIDENTALIS. Greatlyenlarfied genns. The three anterior pairs increase in length, the third pair being the longest, and all are directed anteriorly. The fonrth pair are very short and fold across the body. The last threepairsincrease in length, the seventh pair being the longest, and all these are directed posteriorly. The legs are compact and lie folded on the ventral side and can not be seen from a dorsal view.

There is but one specimen collected by the Albatross in 1888 at Magdalena Bay, Lower Califorıia; depth, 12 fathoms.

Type.-No. 22578, U.S.N.M.
This species, when compared with Cleantis planicaula ${ }^{1}$ Benedict, from Pensacola, Florida, presents points of difference which are interesting and which can easily be recognized in the manuscript quoted below.
59. CLEANTIS HEATHII, new species.

Body slender, elongate; surface smooth.
Head with lateral margins straight; anterior margin slightly excavate. Eyes small, lateral. First pair of autennat consist of four joints and are a little longer than half the width of the head. The second pair of antennæ are half as long as the body and are composed of nine

${ }^{1}$ CLEANTIS PLANICAUDA Benedict, new species.

Body linear, densely granulated, five times longer thau broad. Feelf folled beneath out of view from above. Body lined longitudinally, by six more or less brokeu black lines. The lines on the sides are more distinct than those above.
Head subquadrate, partially inmersed in the first thoracic segment and rounded on the posterior margin; sides parallel, anterior margin emarginate; a deel depression or groove runs from the median notch to the center of the head. The eyes are situated near the antero-lateral angle; post-occipital lobe distinct; antenne with six segments; first very short and nearly immobile; second very short and stont; the third segment is equal in length to the second, but not so stout; the fourth and fifth are of equal length and about one third longer than the second and third segments. The terminal segment or flagellum is lighter in color, and is armed with short bristles. The length of the antenne is equal to the length of the head and first two thoracic segments. The antennule extend to the middle of the third segment of the anteunse. The first segment is quadrate; the second suluquadrate; the third is pear-shaped; the fourth segment is very small.

The segments of the thorax are nearly equal in length and breadth, the third and fourth being but little longer than the others. The epimera of the second, third, and fourth segments are very small and can not be seen from aloove. On the fifth, sixth, and seventh segments the epimera are large and project well behind the margin of the segment in the form of an acute angle.

The pleon is composed of four segments; the first three are very narrow; the terminal segment is elongated with subparallel sifles. A marked character of the pleon is its obliquely truncated extremity. The oblique terminus is perfectly flat with a raised margin.

The feet of this species, as in the typical species described by Dana, are in two series. The first is composed of the first three pairs of feet, which are comparatively stout and increase in length to the third segment. The second series begins on the fourth segment with a pair of short feet, which fold transversely, the other pairs are successively louger and fold backwards. The feet of the second series are much more slender than those of the first. The dactyli of all are biungulate. The carpal and propodal joints are spinulose beneath.

The operculum is not traversed by an oblique line. The sides of the basal segment are subparallel. The terminal segment is abont as broad as long.

Length, 15 mm . ; width, 3 mm .
Type.-No. 22579, U.S.N.M.
joints, the three terminal ones forming the flagellum, which can not be distinguished from the peduncle.

Thoracic segments subequal, with harrow epimera, those of the seeond, third, and fourth segments reaching but half

Fig. 25.-Cleantis HEATHII. $\times 6$? the length of the segments, the last three epimera extending to the extremity of the segments.

The abdomen is composed of three segments with suture lines indicative of another. The terminal segment is broadly rounded posteriorly, with small but acute lateral angles. The sides are almost parallel.

The first four pairs of legs are directed anteriorly; the last threc extend in a posterior direction. There is no perceptible inequality in length. The dactyli are bifid.

Two specimens were sent by Mr. Heath from Monterey Bay, California.

Type.-No. 22577, U.S.N.M.

22. EUSYMMERUS, nevv genus.

Body elliptical. Palp of maxillipeds three-jointed. Second pair of antenue with joints of flagellum all consolidated and forming a single piece. Eyes dorsally situated.

Lateral margins of thoracic segments expanded, edges straight and full. Epimera of second, third, fourth, and fifth segments coalesced and firmly united with segments, those of the sixth and seventh segments distinct and visible.

Abdomen composed of one segment with suture lines indicative of auother partly coalesced segment.
60. EUSYMMERUS ANTENNATUS, new species.

Body elliptical, tapering toward the extremity; surface smooth.
Head three times broader than long, with the antero lateral angles prominent. Anterior margin excavate. Lateral margins expanded. Eyes situated dorsally on the extreme lateral margin in the median transverse line. First pair of antenme four-jointed, short, extending only a little beyond the second joint of the second pair of antennir. Second pair of antemme are six-jointed, geniculate, the last or flagellar joint being somewhat clavate.

Thoracic segments with lateral margins expanded. Lateral elges straight, full. Epimera of second, third, fourth, and fifth segments coalesced and firmly united with the segments; epimera of sixth and seventh segments distinct and articulating with segments.

Abdomen of only one segment with suture lines indicative of another partly coaleseed segment. Abdomen posteriorly rounded, tapering from the base to the extremity.

Legs slender, with dactyl biunguiculate.
Color of specimen brown. Lateral edges of thoracic segments colores.

Fig. 20.-Eusymmerus antennatus. $\times 8$.

Fig. 27. -MAXILLIPED OF EUSYMMERUS ANTENNATES.

One individual from off Abreojos Point, Lower California, station 2S35, was collected by the U. S. Fish Commission steamer Albatross; depth, 48 fathoms.

Type.-No. 22580, U.S.N.M.
Family X. ARCTURIDA.
23. ARCTURUS Latreille.

Flagellum of second pair of antenna more than four-jointed. Fourth segment of thorax not greatly longer than others. Marsupium of female composed of four pairs of plates. Posterior thoracic legs biunguiculate.

ANALYTICAL KEY TO THE SPECIES ON ARCTURUS. '
a. End of abdomen notched, as seen from above.
b. Body smooth and free from spines 61. Arcturus beringanus Benedict.
b. Body spiny.
c. Head and six segments of thorax each with a pair of spines on the dorsum. Second and third articles of antenna without spines.
62. Arcturus longispinis Benedict.
c^{\prime}. Head and segments of thorax with not less than two pairs of spines to the segment.
d. Head with one large median spine on anterior part of head in front of eyes.
63. Arcturus intermedius, new species.
d'. Head with three spines on anterior part of head in front of eyes.
64. Arcturus murdoch Benedict.
a^{\prime}. End of abdomen without notch
65. Arcturus glaber Benedict.

[^18]
61. ARCTURUS BERINGANUS Benedict.

Arcturus beringanus Benedict, Proc. Biol. Soc. Washington, XII, 1898, pp. 46, 47.
Hubitat.-Alaska; Bering Sea.

62. ARCTURUS LONGISPINIS Benedict.

Arcturus longispinis Benedict, Proc. Biol. Soc. Washington, XII, 1898, pp. 44, 45.
Habitat.-Aleutian Islands.

63. ARCTURUS INTERMEDIUS, new species.

Head, with a deep excavation on its anterior margin, the antero-lateral angles being produced in a double process, the inner one rounded, the onter one acutely pointed. Near the anterior margin in the median line is one large spine. Just back
 of the eyes and between them are two long spines. The lateral margins of the head are produced in two small angulations with a rounded sinus between, posterior to the double antero-lateral process. On the post-lateral margin on either side of the head is a small spine.

The first pair of antennæ are small and short, not reaching to the end of the second joint of the secoud pair of antennæ. The first joint of the second pair of antenne is visible and unarmed; the second joint is armed with three spines; the third joint is unarmed, and is about twice as long as the second joint; the fourth and fifth joints are about equal in length and are each about twice as long as the third; the flagellum contains three joints.

The first, second, and third thoracic segments have a transverse row of six large spines, three on either side of the median longitudinal line, the two center ones being the longest, although all are very long. The fourth segment is twice as long as any of the other segments, and has a transverse constriction on the posterior half of the segment. On the anterior portion are six spines, three on either side of the median line, the four onter ones being in'a straight line, the inner two below this line. On the posterior portion are six spines also, three on either side
of the median line. The fifth thoracic segment has twelve spines, six on either side of the median line. The sixth segment has ten spines, five on either side. The seventh and last segment has eight spines, four on either side.
The abdomen is composed of two segments. The first is short, with twelve spines, six on either side of the median line, the four inner ones being arrauged in two longitudinal series, the two upper ones being small, the two lower ones very long. The terminal segment has the upper surface smooth. This segment terminates in two long divergent spines. There is a single spine on the lateral margin on either side halfway down the segment. The three anterior pairs of legs have each two spines on the coxal joint and one spine on the basis. The body increases in width from the first to the fourth segment, and then decreases in width from the fourth to the terminal segment.

One specimen from Kyska Harbor, Alentian Islands, 10 fathoms, colleeted by Mr. W. If. Dall.
Type.-No. 225̄81, U.S.N.M.
Our species differs from A. murlochi in the abseuce of spines on the third joint of the second pair of antennar; in the greater length of this joint in relation to the preceding joint; in the greater length of the two following joints; in the presence of a single spine on the anterior part of the head, while in A. murdochi there are three, and of two spines on the posterior part, while in A. murdochi there are four; in the absence of two small spines just below the constriction in the fourth segment; in the absence of the row of spines on the terminal segment of the body; and in the presence of two spines on the coxal joint and one on the basal joint of the legs, while in A. murlochi there is but one spine on the basal joint.

This species is also distingnished from A. hystrix in the presence of a single median spine on the anterior part of the head, while in A. hystrix there are two, one on either side of the median line and widely separated; in the presence of two spines on the posterior part of the head, while in A. hystrix there are four; in the absence of the double row of spines on the terminal segment of the body; and in the absence of the spine at the articulation of the third joint of the second pair of auteunx.

64. ARCTURUS MURDOCHI Benedict.

Arcturus murdochi Benedict, Proc. Biol. Soc. Washington, XII, 1898, pp. 49, 50. Mabitat.-Point Franklin, Alaska.

65. ARCTURUS GLABER ${ }^{1}$ Benedict.

Areturus glabrus Bexedict, Proc. Biol. Soc. Washiugton, XII, 1898, p. 46.
Habitat.-Beriug Sea.

IV. ASELLOTA.

ANALYTICAL KEY TO TIE FAMILIES OF ASELLOTA.

a. Latoral parts of cephalon scarcely expanderl. Eyes, when present, small, lateeral. Peduncle of inferior antenne without small accessory appendage ontside of third joint. Legs ambulatory, except first pair, which are distinctly subcheliform; legs with dactylus gencrally uniunguiculato. First pair of pleopoda in female very small, not operculiform. Onter lamella of second pair very large and incrusted, so as to form, together with corresponding lamella of other side, a sort of operculnm, covering the two succeeding pairs.

Family XI. Λ sellide (p. 856).
a^{*}. Lateral parts of cephalon usually lamellarly expanded. Eyes, when present, usually subdorsal. Peluncle of inferior antenne generally with small accessory appendage ontside of third joint. Legs subequal in length with dactylus generally bi- or triunguiculate; first pair sometimes prehensile. First pair of pleopoda in fomale transformed into a single, largo opercular plate. Outer lamellie of two sncceeding pairs narrow and confluent with basal part.

Family XII. Janiride (p. 856).

Family XI. ASELLID A.

24. ASELLUS Geoffroy.

Dactyli of last six pairs of periopoda uniunguiculate. Lateral margins of segments produced. Eyes distinct, lateral. Mandibles strong, with a three-jointed palp. Head without rostrum.

66. ASELLUS TOMALENSIS Harford.

Asellus tomalensis Harford, Proc. Cal. Acad. Sci., VII, 1877, Pt. 1, pp. $54,55$.
Mabitat.-Tomales Bay, California.

Family XII. JANIRID A.

ANALYTICAL KEY TO THE GENERA OF JANIRIDAE.
$a^{\prime} .{ }^{2}$ Eyes dorsal. Antennæ of first pair well devoloped, with mnltiarticulate flagellum. Antennae of second pair long, with multiarticulate flagellum, peduncular joints not dilated. Mandibles with a three-jointed palp, and with cutting part separated from molar part by a deep incision.
b. Head without any true rostrum. First pair of antenne extremely small with flagellum rudimentary. Second pair of antenuse of moderate length, without any distinctly squamiform appendage. First pair of legs not prehensile. Uropoda extremely small, branches very short, nodiform.. 25. Jora.
b^{\prime}. Head with promineut rostral projection, or with a comparatively small rostrum, or withont rostrum. First pair of antenne well developed; flagellum multiarticulate. Second pair of antenne very much elongated with a wellmarked scalelike appendage ontside of third joint. First pair of legs prehensile, carpus large, subfusiform, and edged inside with spines; propodus narrow, linear, and very movably articnlated to carpus, so as to admit of being bent in against it. Uropoda largely developed, with branches slightly nuequal.

[^19]c. Head with lateral parts produced to very.prominent acute lappets. Segments of thorax with lateral parts laciniate and produced. Candal segment forming on each side, at the end, a triangnlar expansion 26. Ianthe.
e^{\prime}. Head with lateral parts not produced into lappets. Segments of thorax with lateral parts not prodnced, not laciniate. Caulal segment rounded, not expanded laterally
27. Janira.
a^{\prime}. Eyes lateral. Antenne of the first pair small with flagellum obsolete. Antenuse of the second pair short, with peduncular joints dilated, rudimentary flagellum, containing five articles, and equal in length to the width of the head. Mandibles with a three-jointed palp, and with cutting part composed of five tecth 28. Jeropsis.

25. J ERA Leach.

67. JÆRA WAKISHIANA Spence Bate.

Jera wakishiana Spence Bate, Lord's Naturalist in British Columbia, II, 1866, p. 282.-C. Bovallius, Bihang till K. Sv. Vet. Akad. Handl., II, 1886, No. 15, p. 49.
Habitat.-Esquinault Harbor, British Columbia.

26. IANTHE Bovallius.

analytical key to tile species of iantile.

a. Head with prominent rostrum; lateral margins incised and prodnced into two angulations. Second and third thoracic segments with epimeral lobes double. Terminal segment of body with lateral angulations and central portion acute. 68. Ianthe triangulata, new species.
a^{\prime}. Head without rostrum; lateral margins entire and produced into one anterior angulation. Sccond and third thoracic segments with epimeral lobes single. Terminal segment of body with lateral angulations and central portion blunt and rounded
69. Ianthe erostrata, new species.

68. IANTHE TRIANGULATA, new species.

Surface of body smooth; color yellow, marked with black dots.
Head with rostrum in front equal to one-half the length of head. Anterior margin lobate, between the rostrum and the lateral angulations. The side of the head is produced in two angulations, the upper one extending in an oblique direction and not reaching beyond the anterior margin of the head. The first pair of antennæ are not as long as the width of the head. The second pair of autenne are longer than the body.

The lateral margins of the first segment are produced into two angulations; those of the second and third into two, with the epimera produced into two-lobed angulations; those of the fourth into two lobes, the small epimeral lobe or angulation between; and those of the fifth, sixth, and seventh into one large upper lobe, and one small lower lobe.

The terminal segment is produced backward at the sides into two sharply pointed angulations, with a broad triangulate central lobe between, to which the uropoda are attached. The uropoda are longer
than the terminal segment, the outer branch somewhat shorter than the inner one, and both fringed with hairs.

First pair of legs prehensile; remaining pairs simple.

Fig. 29.-Ianthe triangllata. $\times 13 \frac{1}{3}$.
Two specimens were collected by Mr. Heath at Monterey Bay, California.

Type.-No. 225S2, U.S.N.M.
69. IANTHE EROSTRATA, new species.

Head two and a half times broader than long, with prominent anterolateral angulations. Lateral margius produced, entire. In place of the rostrum, which marks all the other known species of this genus, there is a small median point. The eyes are dorsally situated a short dis. tance from the lateral edges. The first pair of antennæ are short, not equal to the width of the head. The second pair are broken in the specimen examined.

The first thoracie segment is produced laterally in two angulations. The second, third, and fourth segments are each produced in two angu-
lations, with a small epimeral lobe in between. The fifth, sixth, and seventh segments have each a large anterior lobe and a small posterior epimeral lobe.
The terminal segment has two bluntly triangular angulations, one on either side of a bluntly triangular central portion. The uropoda are about as long as the caudal segment, are styliform, with branches nearly equal. The first pair of legs are prehensile. The others are simple, biunguiculate. One specimen was collected at Chichagof Harbor, Attu (Aleutian Islands), by Mr. W. H. Dall.

Type.-No. 22610, U.S.N.M.
27. JANIRA Leach.
70. JANIRA OCCIDENTALIS Walker.

Janira occidentalis Walker, 'Trans. Liverpool Biol. Soc., XII, 1898, pp. 280, 281, pl. xv, figs. 7-10.

Habitat.-Puget Sound, Washington.

28. J EROPSIS Koehler.

71. JÆROPSIS LOBATA, new species.

Surface of body smooth.
Color very peculiar and striking. The head is brown. The first thoracic segment is perfectly white, without any markings. The second, third, and fourth

Fig. 30.-Tanthe erostrata. $\times 13 \frac{1}{3}$. segments are brown. The fifth and sixth are white. The seventh thoracic segment and the caudal segment are brown. This peculiar marking gives the body a striped appearance.

Head large; front produced into a prominent triangular process, with rounded apex, very broad at the base, occupying half the anterior margin of the head. The antero-lateral angles of the head are produced in acute angles on either side to a distance equal to half the length of the frontal process. The eyes, which are small, are situated on the extreme lateral margins of the head. The first pair of antenne are extremely small, equal in length to less than half the width of the head; flagellum obsolete. The second pair of antennie are also extremely short, equal in length to the wilth of the head, with rudimentary flagellum, composed of about five joints, and with peduucular joints dilated. Mandibles have the cutting part composed of five teeth; palp, three-jointed.
The thoracie segments are subequal in length, with lateral edges produced, but not laciniate, and separated from each other by lateral incisions.
Caudal segment regularly rounded, with two small incisions at the place where the uropoda are attached, between which is a romnled lobe. Uropoda are extremely small, short, nodiform.

Legs simple, similar in structure, with biunguiculate dactyli.
Two specimens from Monterey Bay, California, were sent by Mr. Heath.

Type.-No. 22583, U.S.N.M.
This species is very close to Jeropsis brevicornis, but differs in the following points: the coloring of the body, which in J. brevicornis is perfectly transpar-

Fig. 31.-Maxillipped and MandiBLE OF J 天ROPSIS LOBATA.

Fif. 32.-J 在ropsis lo. BATA. $\times 20$. ent and colorless, with the exception of the head, which is marked with a large brown spot, while in our species the head is dark, as are also the entire second, third, fourth, and seventh thoracic seg-

Fig. 33.-Antenne of J. ※ROPSIS LOBATA.
ments and the terminal abdominal segment, the other segments being colorless; in the shape of the terminal segment, which is perfectly rounded in J. brevicornis and fringed with hairs, while in our species there are two posterior incisious for the reception of the uropoda, and an absence of hairs; in the larger median iobe on the anterior margin of the head; in the acuteness of the antero-lateral angles of the head, which are rounded in J. brevicormis; in the more angular post-lateral angles of the head, and in the more angular antero- and post-lateral angles of the thoracic segments. Other differences are noticed from a comparison of both pairs of antenne.

V. ONISCOIDEA.

ANALYTICAL KEY TO TIIE FANILIES OF ONISCOIDEA.

a. Flagellum of outer antenne not multiarticulate. Buccal mass not very prominent below. First maxilla have two plumose setie on the inner plate. Mandihles with molar expansion obsolete, withont any triturating surface, it being replaced by brushlike recurved sete. Maxillipeds with terminal part three-
articulate; epignath large, flanking the basal part. Sexual appendage of male simple, and generally connected with inner rami of first pair of pleopoda. Uropoda, with inner branch smaller than outer, and attached far in front of it.
b. External antennse generally long, close together, with antennal openings large. Body scarcely able to be contracted into a ball. Head less manifestly inmersed in first thoracic segment. Lateral parts of the head separated by a vertical marginal and inframargimal line. Clypeus arched. Legs generally long. Uropoda produced, reaching beyond the terminal segment of the abdomen and the post-terminal segment. Terminal segment narrower than preceding ones and conically produced at end....... Family XIII. Oniscide (p.861).
b^{\prime}. External antennæ generally short, with antenual openings small. Body able to be contracted into a ball. Head immersed in first thoracic segment. Lateral parts of the head undifferentiated. Clypeus perpendicular. Legs generally short. Uropoda short, not reaching beyond the epimera of the terminal segment of the abdomen or the post-terminal segment. Terminal segment short and broad

Family XIV. Armadillidide (p. 865).
a^{\prime}. Flagellum of outer antenne multiarticulate. Buccal mass prominent. First maxille have three plumose setie on the inner plate. Mandibles with molar expansion large and broad, exhibiting a finely fluted triturating surface. Maxillipeds with terminal part distinctly five-articulate; epignath short. External sexual appendages in male double. Inner ramus of first pair of pleopoda of a similar structure in both sexes. Uropoda with both branches styliform Family XV. Lighde (p. 865).

Family XIII. ONISCIDÆ.

ANALYTICAL KEY TO THE GENERA OF ONISCIDE.

a. Flagellum of external antenne biarticulate. External opercular ramus of the first, second, and rarely of the third or all the pairs of the abdominal appendages furnished with trachea.
b. Lateral lobes of the head large; frontal lobe more or less projecting. Eyes subdorsal. First two abdominal segments generally very short; three following ones large, with large opimera. Terminal segment not reaching beyond the epimera of preceding segment. Uropoda somewhat even; longer in male than in female
29. P'orcellio.
b^{\prime}. Lateral lobes of head small, hardly projecting; frontal lobe obsolete. Eyes lateral. First two abdominal segments scarcely shorter than those following. Epimera of all the segments small. Terminal segment extending besond the epimera of preceding segment. Uropoda subequal in both sexes.
30. Metoponorthus.
a^{\prime}. Flagellum of external antennæ triarticulate. External opercular ramus of abdominal appendages containing no special respiratory organ.
b. Front of head produced at the middle and at the sides in tubercles; lateral tubercles hornlike. Epimera of abdominal segments moderate or small.
31. Alloniscus.
b^{\prime}. Front of head not produced; with lateral lobes. Epimera of abdominal segments large
32. Lyprobius.

29. PORCELLIO Latreille.

ANALYTICAL KEY TO TIIE SPECIES OF PORCELLIO.

a. Surface of body smooth.
b. Frontal median lobe of head rounded, a little prodnced. Articles of the flagellum of external antenne equal in length. Last segment of tho abdomen with its extremity widely rounded.
72. Porcellio formosus Stuxlberg.
b^{\prime}. Frontal median lobe of head more acnte, minnte. First article of the flagellum of external antenna equal in lengrth to the other or a little longer. Last segment of the abdomen with its extremity acute... 73. Porcellio lorvis Latreille. a^{\prime}. Surface of body closely and roughly granulated.... 74. Porcellio scaber Latreille.

72. PORCELLIO FORMOSUS Stuxberg.

I'orcellio formosus Stuxberg, Øfversigt af Vetensk. Akad. Forhandl., 1875, No. 2, p. 57.-Bridde-Lund, Crust. Jsop. Terrestria, 1883, p. 141.

Habitat.-San Francisco and San Pedro, California.

73. PORCELLIO LÆVIS Latreille.

I'orcellio laris Latreille, Hist. Crust. Ins., VII, p. 46; Gen. Crust., I, p. 71. Leacii, Edinh. Encycl., VII, p. 406; Transact., XI, p. $37 \overline{5}$.
Oniscus laris Lamarce, Hist. nat. an. 8. vert., V, p. 15t; 2d ed., V, p. 261.
(?) Porcellio lepis Risso, Crust. Nice, p. 156 ; Hist. Nat., pp. 119, 163.-Desmarest, Consid., p. 321.
(?) Porcellio degeerii Auloun aud Savigny, Descript. de l'Egypte, p. 289, pl. xill, fig. 5.
Porcellio eucercus Brandt, Bull. Soc. Imp. d. Moscon, VI, 1833, p. 177.-Milnelidwards, Hist. Nat. des C'rist., III, p. 168.
P’orcellio syriacus Brandt, Bull. Soc. Imp. d. Moscon, VI, 1833, p. 178.—MilneEuwards, Hist. Nat. des Crist., III, p. 170.
Iorcellio musculus Brandt, Bull. Soc. Imp. A. Moscon, VI, 1833.
I'orcellio cinerascens Brandt, Bull. Soc. Imp. d. Moscou, VI, 1833, p. 178.
Porcellio dubius Brandt, Bull. Soc. Imp. d. Moscon, VI, 1833, p. 178.-MilneEnwards, Hist. Nat. des Crust., III, p. 170.
porcellio poeyi Gúsrin, Comptes Rendus, 1837, p. 132.
Percellio lavis Milne-Edwards, Hist. Nat. des Crust., III, p. 169; Rigne an. Planch, p. 71, bis, fig. 2.
Porcellio urbicus Kocir, Dentsch. Crust., p. 36.
Porcellio degeerii Brandt, Wagner Reise Alg., III, 1836, p. 278.
Porcellio oratus Zaddaci., Synops., p. 13.
Porcellio flaripes Koch, Berichtig, etc., p. 206, pl. 8, fig. 97.
l'orcellio degeerii Lucas, Expl. d'Alg., I, pp. 69, 139.
Porcellio leris Lereboullet, Mém. de la Soc. de Strashourg, IV, p. 45, pl. I, fig. 7; pl . 11, figs. 55-60.
I'orcellio poeyi Guérin, Ramon de la Sagra, Crnst., p. 67.-Saussure, Méru., p. 61, pl. v, fig. 34.
Porcellio cubensis Saussure, Mém., p. 61, pl. v, fig. 35.
Porcellio sumichrasti Saussure, Mf́m., p. 62, pl. v, fig. 36.
Porcellio cotille Sadssure, M'́m., p. 62, pl. v, fig. 37.
Porcellio mexicanus Saussure, Mém., p. 63, pl. v, tigs. 39, 40.
Porcellio aztecus Saussure, Mém., p. 63, pl. v, fig. 38.
Porcellio interruptus Heller, Verh. Zool. Bot. Ges. Wien, XI, p. 495̃ Novara Exp., p. 136, pl. 12, fig. 6 (vix adnlt).
Porcellio laris Plateau, Crust. Isop., p. 10.—Budde-Lund, Nat. Tidsskrift., 3d ser., VII, p. 236.
Porcellio aztecus Miers, Proc. Zool. Soc. London, 1877, p. 669.
Porcellio lexis Uldanin, Crust. Turkest., p. 17, pl. 4, figs. 1-10.-Budde-Lund, ${ }^{1}$ Crust. Isop. Terrestria, 188.5, pp. 138-141.-Hansen, Bull. Mus. Comp. Zool. Harvard College, XXXI, 1897, p. 124.

[^20]Habitat.-Distribution world-wide; Colfax, California (Cook and Jaquay); Monterey, California; Unalaska.

74. PORCELLIO SCABER Latreille.

Oniscus ascllus Linn.ecs, F'n. Su., p. 2058 ; Syst. Nat., I, p. 1061 ; in part.
Porcellio scaber Latreille, Hist. Crust. Ins., VII, p. 45 ; Gen. Crnst, I. p. 70.Leach, Edinl. Encycl., VII, p. 406.
Oniscus granulatus Lamarck, Hist. Nat. des animanx sans vertêhres, V, p. 154; 2d ed., V., p. 261.
Porcellio scaber Rısso, Crust. de Nice, p. 155; Hist. Crust., p. 119.
Porcellio nigra SAy, Journ. Phil. Acad., I, p. 432.
Porcellio granulatus Brébisson, Mém. Soc. C'alv., 1825, p. 261.
Porcellio scaber Desmarest, Consid. Crust., p, 321.-Branit and Ratzeisula, Med. Zool., 11., p. 77, pl. 12, figs. 1-4 and A-B.-Blianit, C'onsp., p. 14 (13nll. Soc. Imp. d. Naturalistes de Moscou, VI, 1833).
Porcellio brandtii Mrlne-Enwards, Hist. Nat. des Crust., III, P. 168.
Porcellio granulatus Milae-Edwards, Hist. Nat. des C'rist., III, p. 169, pl. 32, fig. 21.
Porcellio scaber Minne-Eiwaris, Cuvier Rgr. An., 1849, pl. 71-71 bis.
Porcellio nigra Gould, Rep. Crust., p. 337.
Porcellio scaber Kocn, Dentschlands Crust., p. 34.
Porcellio dubius Kocn, Deutschlands Crust., p. 34.
Porcellio asper Koch, Berichtig, p. 207, pl. 8, fig. 98.
Porcellio scaber Lereboullet, Mém. Strasb., IV, p. 34, pl. 1, figs. 4, 5; pl. 2, figs. 43-47.
Porcellio gcmmulatus Dana, Crust. U. S. Expl. Exp., 1853, p. 725, pl. 47, fig. 7.Stimpson, Jouru. Bos. Soc. Nat. Hist., VI, p. 66.
Philoscia tuberculalata Stimpson, Proc. Cal. Acad. Sci., I, p. 89.
Porcellio scaber Sill, Crust. Sieb., 1861, p. 3.-Bate and Westwood, İrit. C'rust., II, p. 475.
Porcellio panlenses Heller, Norara Exp., p. 13f, pl. 12, fig. 5.
Porcellio scaber Plateau, Bull. Acad. r. Belgigue, 2 d ser., XXIX, i870, No. 2, p. 8.-E. Brandt, Hore Soc. Ent. Rossi, VIII, p. 167.-Budde-Lund, Nat. Tidsskrift., $3 d$ ser., VII, p. 238 ; Prospectus, p. 3; Bos, Crust. Hedrioph. Nederl., pp. 38, 91.-Budde-Lund, Crust. Isop. Terrestria, 1885, pp. 129-131.1
Habitat.-Distribution world-wide; San Francisco, California; San Pedro, California; Puget Sound.

Budde-Lund suggests that Porcellio gemmulatus Dana differs in no wise from Porcellio scaber. ${ }^{2}$
30. METOPONORTHUS Budde-Lund.
75. METOPONORTHUS PRUINOSUS Budde-Lund.3

Metoponorthus pruinosus Budde-Lund, Crust. Isop. Terrestria, 1885, pp. 169, 170.
Porcellio maculicornis Kocir, Deutschlands Crustaceen, 1810, p. 34.-Stuxberg, \emptyset fversigt af Vetensk. Akad. ForhandI., 1875, No. 2, p. 55.
Habitat.-California.
${ }^{1}$ See Budde-Land for further synonymy.
${ }^{2}$ Crust. Isop. Terrestria, 1885, p. 131.
${ }^{3}$ See Budde-Lund for further synonymy.

31. ALLONISCUS Dana.
 ANALYTICAL KEY TO THE SPECIES OF ALLONISCUS

a. Surface of body rery densely granulated. Margins of epimera serrated.
76. Alloniscus mirabilis Stuxberg.
a^{\prime}. Surface of body punctate.
b. Lateral processes of the head large, prominent.
77. Alloniscus cornutus Budde-Lund.
b^{\prime}. Lateral processes of the head small, scarcely prominent.
78. Alloniscus perconrexus Dana.

76. ALLONISCUS MIRABILIS (Stuxberg).

Rhinoryctes mirabilis Stuxberg, $\emptyset f$ versigt af Vetensk. Akad. Forbandl., 1875, No. 2, p. 51.
Allomiscus mirabilis Budine-Luni), Crust. Isop. Terrestria, 1885, p. 229.
Habitat.-California.

77. ALLONISCUS CORNUTUS Budde-Lund.

Alloniscus cornutus Budde-Lund, Crust. Isop. Terrestria, 1885, pp. 228, 229.
Habitat.-California.

78. ALLONISCUS PERCONVEXUS Dana.

Alloniscus percomexus Dana, Proc. Acad. Nat Sci. Phila., VII, p. 176.-Stimpson, Journ. Bos. Soc. Nat. Hist., VI, p. 66.-Budde-Lund, Crust. Isop. Terrestria, 1885, р. 225.
(?) Alloniscus maculosus Harford, Proc. Cal. Acad. Sci., Pt. 1, VII, 1877, p. 54-

Fig. 34.-Alloniscus perconvexus Dana. $\times 8$.
Mabitat.-California; Pacific Grove: Santa Barbara; Monterey Bay, collected by Mr. Heath; Tillamook Head, Oregon.
32. LYPROBIUS Budde-Lund.
79. LYPROBIUS PUSILLUS Budde-Lund.

Lyprobius pusillus Budde-Lund, Crust. Isop. Terrestria, 1885, 1. 230.
Habitut.-California.

Family XIV. ARMADILLIDIDEE.

33. CUBARIS Brandt.

Outer branch of the uropoda small or minute, rather smooth. Terminal segment not shorter than uropoda. Terminal segment posteriorly truncate. Clypens very short, with the superior margin entire, lobated at the sides. Terminal abdominal segment subtetragonal. External branch of the uropoda inserted in the middle of the internal lateral margin of the basal joint.

ANALYTICAL KEY TO THE SPECIES OF CUBARIS. ${ }^{1}$

a. Last abdominal segment longer than broad. 80. Cubaris californica (Budde-Lund). a^{\prime}. Last abdominal segment a little transverse, with median constriction. Antenmal minutely roughened
81. Cubaris affinis (Dana).

80. CUBARIS CALIFORNICA (Budde-Lund).

Armadillo speciosus Stuxberg, \emptyset fversigt af Vetensk. Akad. Forhandl., 1875, No. 2, p. 62.
Armadillo californica Budde-Lund, Crust. Isop. Terrestria., 1885, p. 40.
Habitat.-California: San Francisco and Sau Pedro.
Budde-Lund ${ }^{2}$ remarks that perhaps this species does not differ from Cubaris affinis (Daua).

81. CUBARIS AFFINIS (Dana).

Spherillo affinis Dana, Proc. Acad. Nat. Sci. Phila., VII, 1854, p. 176.-Stimpson, Journ. Bos. Soc. Nat. Hist., VI, 1857, p. 65.
Armadillo affinis Budde-Lund, Crust. Isop. Terrestria, 1885, p. 39.
Habitat.-Califoruia.

Family XV. LIGIIDÆ.
 ANALYTICAL KEY TO THE GENERA OF LIGIIDA.

a. Tropoda equal in length, styliform, often filiform. Interior mala of the mandibles with numerous pencils of hairs. Last segment of body broad, with distinct epimeral plates. Maxillipeds with palp four to five jointed; epignath rounded
b. Extremity of uropods furnished with two long apical bristles. Interior mala of right mandible with three pencils of hairs, of left mandible with five pencils of hairs. Last segment of body small aud without any epimeral plates. Maxillipeds with a five-jointed palp; epignath narrow, linguiform.. 35. Ligidium.
b^{\prime}. Extremity of uropols not furnished with two long apical bristles.
36. Stylonisens.

[^21]
34. LIGIA Fabricius.

ANALYTICAL KEY TO THE SI'ECLES OF LIGLA.

a. External antenne shorter than the borly.
b. Caudal stylets about equal to half the length of bouly.
82. Ligia occideulalis Dana.
b^{\prime}. Candal stylets ahout equal to one-fifth the length of borly.
83. Liyia pallasii lirandt.
u^{\prime}. External antenne longer than body, or equal to length of body. Camdal stylets about equal to two-thirds length of body............... 84. Ligia exotica Roux.

82. LIGIA OCCIDENTALIS Dana.

Ligia occidentalis Dana, U.S. Expl. Exp. Crust., II, p. 7'2, pl. Xlix, tig. 7; Proc. Acar. Nat. Sci. Phila., VIL, p. I76.-Stimpson, Bos. Journ. Nat. Hist., VI, 1857, p. 66.-Harfolid, Proc. Cal. Acad. Sci., VII, 1877, p. 116.-BuddeLund, Crust. Isop. Terrestria, 1885, p. 264.
Habitut.-California: San Francisco Bay; San Diego; Sacramento River; Monterey Bay; Lower California.

83. LIGIA PALLASII Brandt.

Ligia pallasii Brandt, Bull. Soc. Impér. des Natur. de Moscon, VI, 1833, p. 172. Ligia dilatata Stimpson, Bos. Journ. Nat. Hist., 1857, p. 67, pl. Xxir, fig. X.S. I. Sairti, Report of Progress of Geological Survey of Canada, 1878-79. Ligia septentrionalis Lockin(;ton, Proc. Cal. Acad. Sci., VII, 1877, Pt. 1, p. 46. Ligia stimpsomi Miers, Proc. Zool. Soc., 1877, p. 671 (sce footnote). Ligia pallasii Budibe-Lund, Crust. Isop. Terrestria, 1885, pp. 261, 262.
Habitat.-Unalaska; Sitka; Tanager, Aleutian Islands; Victoria, Vancouver Island; Puget Sound; California.

84. LIGIA EXOTICA Roux.

Ligia exolica Roux, Crnst. Médit., p. 3, pl. xir, fig. 9.
Ligiu grandis Perty, Spix. H. Martins, p. 212, pl. xi, fig. 13.
Ligia gaudichandii Mnne-Edwards, Hist. Nat. les Crust., III, 1. 157.
Ligia bandiuiana Milne-Enwards, Hist. Nat. des Crust.. III, p. 1ij5.
Ligia (Italicay coriacea Kocı, Deutschl. Crust., p. 36; Berichtig., p. 211.
Ligia guudichuudii Dana, Expl. Exp., p. 741, pl. Xlix, figs. $6 a-h$.-Nicolet, Ciay, Hist. Chile, III, p. 265.
Ligia baudiniana Miers, Proc. Zool. Soc.; 1877, p. 670.
Ligia exotica Budde-Lund, Crust. Isop. Terrestria, 1885, pp. 266-268.
Habitat.-Widely distributed; California; Topolobampo, Mexico(Mr. Edward Palmer).

35. LIGIDIUM Brandt.

ANALYTICAL KEY TO THE SPECIES OF LIGIDIUN.

a. Inner process of the basal article of the uroporla three times shorter than the terminal exterual branch; internal terminal branch reaching the apex of the external branch: the two terminal hairs equal in length to the external branch. 85. Ligidium hypnornm (Cnvier).
a^{\prime}. Inner process of the basal :urticle of the uropoda fons times shorter than the terminal external branch; interual terminal branch long, extending much beyond the apex of the external branch, beng a sixth part longer; the two terminal hairs short, equal in leugth to half the external branci.
86. Ligidium teuue Bndde-Lund.

Oniscus hypuornm CUVIEre, Journ. d'hist. nat. II, p. 19, pl. 26.
Ligidium hypnorum Budde-Luni, Naturhistorisk Tidsskrift, 3d sir., V11, 187(1, ן. $225 .-S t u x 1 s e r g$, Ofversigt af Yetensk. Akad. Forhandl., 187:, No. 2, 1 . 48.
Habitut.-California (Stuxberg).
86. LIGIDIUM TENUE Budde-Lund.

Ligidium tenue Budde-Lend, Crust. Isop.' Terrestria, 1885, 1 . 25 . 8. Habitat.-Sitka Island.

36. STYLONISCUS Dana.

87. STYLONISCUS GRACILIS Dana.

> Styloniscur gracilis Daxa, Proc. Acad. Nat. Sci. Phila., VII, 1854-55, p. 176.Stinnson, Journ. Bos. Soc. Nat. Hist., VI, 1857, p. (66.-Budne-Lund, Crust. Isop. Terrestria, 1885, p. 271 .

Habitut.-California.

VI. EPICARIDEA.

Family XVI. BOPYRIDN. ${ }^{1}$

Body of female primarily disciform, variously modified subsequently by retrogressive metamorphosis; distinctly segmented; more or less asymmetrical, twisted now to right, now to left; dorsal face flattened; head deeply sunk in thorax and carrying in front two pairs of rudimentary antenne; eyes, when preseut, (lorsal. Maxillipeds lamellar, biarticulate, obtecting the oral area below, and more frequently exhibiting a small terminal joint, and, at base, two curved lanceolate appendages. Legs, seren pairs, sometimes obsolete on one side, and all of same structure, sliort, prehensile; coxal plates obsolete or distinctly defined. Incubatory plates, five pairs, more or less arching over the ventral face of the thorax; first pair, as a rule. concealed by second and divided by a transversal fold into two segments. Abdomen more or less distinctly segmented; pleopoda, forming simple or double lamella, all of the same structure, rarely obsolete. Uropoda, when present, simple lanceolate. Male elongate, very small, symmetrical; segments of thorax distinct, those of abdomen sumetimes distinct, sometimes confluent Mouth parts simple, conic; posterior antenna with flagellum four-articulate; legs of uniform structure; mopoda with inner branch shorter than outer. Parasitic on decapodous crustacua. ${ }^{2}$

[^22]This family has not been sufficiently worked up to offer as yet any systematic arrangement of the genera. ${ }^{1}$

37. ARGEIA Dana.

ANALYTICAL KEY TO THE SPECIES OF ARGE1A.
a. Head transverse. All the thoracis branchial appendages present. All the abdominal appendages present
88. Argeia pugettensis Dana.
u^{\prime}. Head bilobate. Thoracic branchial appendages apparently absent in some of anterior segments. Last three pairs of abdominal appendages wanting.
89. Argeia depauperata Stimpson.

88. ARGEIA PUGETTENSIS Dana.

Argeia pugettensis DaNa, U. S. Expl. Exp. Crust., II, p. 804, jl. Lifi, fig. 7.Stimpson, Bos. Journ. Nat. Hist., VI, 1857, p. 71.
Habitat.-Puget Sound on Crangon munita.
89. ARGEIA DEPAUPERATA Stimpson.

Argeia depanperata Stimpson, Bos. Journ. Nat. Hist., VI, 18:77, p. 71.
Habitat.-San Francisco Bay on Crangon franciscorum.

38. PHYLLODURUS Stimpson

90. PHYLLODURUS ABDOMINALIS Stimpson.

Phyllodurus abdominalis Stimpson, Bos. Journ. Nat. Hist., VI, 1857, p. 71.-Lockington, Proc. Cal. Acad. Sci., VII, 1876, Pt. 1, p. 57.
Habitat.-Puget Sound; Tomales Bay, Califoruia; "on the common Upogebia."
39. BOPYROIDES Stimpson.

gr. BOPYROIDES ACUTIMARGINATUS Stimpson.

Bopyroiles acutimarginatus Stimpson, Proc. Acad. Nat. Sci. Phila., XVI, 1864, p. 156.

Habitat.-Puget Sound, on Spirontocaris brevirostris.

40. PSEUDIONE Kossmann.

aNalytical key to tire species of iseudione.
a. Antenne five-jointed. First pair of maxille absent. In male, eyes present; maxille wanting; last segment of abdomen cordate in form, being narrow anteriorly and having its hinder margin notched
92. Pseudione giardi Calman.
a^{\prime}. Autenn:e four-jointed. Maxillie normal, present. In male, eyes wanting; maxille normal, present; last segment of abdomen triangular and entire.
93. P'seudione galacanthe Hansen.
${ }^{1}$ See Hansen, Bull. Mus. Comp. Zıol., Harvard College, XXXI (1897), p. 112.
92. PSEUDIONE GIARDI Calman.

Preudione giardi Calman, Ann. N. Y. Acad. Sci., XI, 1898, No. 13, pp. 274-281, pl. xxxiv, fig. 5.
Habitat.-Puget Sound, on Pagurus ochotensia (Brandt).
93. PSEUDIONE GALACANTHÆ Hansen.

Pseudione galacanthe Hansen, Bull. Mns. Comp. Zool. Harvard College, XXXI, 1897, pp. 118-120, pl. v, fig. 22 i.

Habitat.-Gulf of California, in branchial cavity of Galacantha diomedece var. parvispina Faxon.

41. BATHYGYGE Hansen.

94. BATHYGYGE GRANDIS Hansen.

Bathygyge grandis Hansen, Bull. Mus. Comp. Zool. Harvard College, XXXI, 1897, pp. 122, 124, pl. VI, firs. 2, 2e.
Habitat.-Oft Acapulco, in branchial cavity of Glyphocrangon spinulosa Faxon.

42. CRYPTIONE Hansen.
 95. CRYPTIONE ELONGATA Hansen.

Cryptione elongata Hansen, Bull. Mus. Comp. Zool. Harvard College, XXXI, 1897, pll. 112-115, pl. ı11, figs. 5, 5 a; pl. IV, figs. $1,1 g$.
Habitat.-Near Galapagos Islands, in branchial cavity of Nematocarcinus agussizii Faxon, which occurs as far north as Acapulco, Mexico.

43. PARARGEIA Hansen.

96. PARARGEIA ORNATA Hansen.

Parargeia ornata Hassen, Bull. Mns. Comp. Zool. Harvard College, XXXI, 1897, pp. 120-12'. pi. vi, figs. 1, 1i.
Habitat.-Off Acapulco Mexico, in branchial cavity of Sclerocrangon procax Faxon.

44. IONE Latreille.

97. IONE CORNUTA Spence Bate.

Ione cornuta Spence Bate, Lord's Naturalist in British Columbia, II, 1866, p. 282. Ione thoracica Hellerr, C'arcinolog. Beitrag \%. Fanna der Adriat. Meeres, Verhand. Zool. Bot. Gessellsch. Wien, XV, pp. 979-984, pl. 17.
Ione cornuta Bate and Westwood, Brit. Sessile-Eyed Crust., II, p. 253.-Giard and Bonnier, Contributions à l'étude des Bopyriens, 1887.
Habitat.-Esquimanlt Harbor, British Columbia, in branchia of Callianassa longimana; Vaucouver Island.

[^0]: 'Sars's analytie key has been nsed with slight modilications. Sars's "An Aeconnt of the Cristacea of Norway," II, Isopota (1896), P'ts. I, II, p. 3.

[^1]: - 'Jino fonr poink following b' ato fakon from Hanson's analytickey of tho ('iro-
 lutod hy Stobhing, Hist, of Crust., 18!13, pl, 310, 3.31.

[^2]: ${ }^{1}$ The characters in this key on the Cirolanide are taken from Stebbing, "History of Crustarea," (1893), p. 312.
 ${ }^{2}$ Miers, Journ. Liun. Soc. London, XV', 1883, p. 19.

[^3]: ${ }^{\prime}$ Hansen, Virlensk. Selsk. Skr., 6th ser., natur. og math. Afil. V, 1890, 11, $3388,3: 39$; for synonyruy see $1,35 \pi$.

[^4]: ${ }^{1 \text { Bull. Soe. Zool. France, XIII, 188x, pp. 3i, } 36 ; \text { Sim Quelques Crustacés Isopodes du }}$ Littoral des Agores, A. Dollfus.

[^5]: 'Schiodte and Meinert regard Egacylla Dana as synonymons with . Ega, and remark tbat Dana's specimen, by which the genns Egacylla was instituted was a Joung Aiga. See Naturhistorisk Tidsskrift, XII, 1879-80, p. 334. See also Liitken, Vid. Medd. Naturh. For., 1*60, p. 180.
 ${ }^{2}$ There are no specimens of the young in the National Mnseum.

[^6]: a. Buth exterior and interior branches of uropoda projecting.
 b. Terminal segment of the abdomen excavated at its extremity ...12. Dynamene. b^{\prime}. Terininal segment of abdomen entire.
 c. Margins of head not produced; antenne conspicnous; legs nomal; mandibles with five-jointed palp
 13. Spharoma.
 c^{\prime}. Anterior and lateral margins of head produced, concealing antenne; propodus of first and second pairs of legs dilated, with retlexed dactylus; mandibles with three-jointed palp
 14. Tecticeps.
 a^{\prime}. Only exterior branch of uroporla projecting; penultimate abdomunal segment in male generally produced in spine; terminal segment excavated with inedian tooth
 15. Cilicaa.

[^7]: ${ }^{1}$ Hesse, Ann. Sci. Nat., 5th ser., XVII, pp. 5, 6; Stebbing, Hist. of Crust., 1893, p. 361; Bate and Westwood, British Sessilo-Eyed Crust., II, p. 432.

[^8]: Proc. N. M. vol. xxi-_i:?

[^9]: ${ }^{1}$ Hist. Crust., 1893, p. 364.
 ${ }^{2}$ Trans. New Zealand Inst., XXIV, 1891, p. 269.

[^10]: ${ }^{1}$ Hist. Crust., 1893, p. 364.
 ${ }^{2}$ \%ool. Coll. Alert, 1884, p. 308.
 "Proc, Lim. Soe. New South Wales, VI, 1. 18:3.

[^11]: ${ }^{1}$ See Miers on the Idoteidw, Journ. Linn. Soc. London, XVI, 1883, pp. 9, 19, 20.
 ${ }^{2}$ Including terminal segment.
 ${ }^{3}$ Dollfus, Fenille des Jeunes Naturalistes, $3 d$ ser., 1895, p. 4; Sars, Crust. of Norway, 1897, Pts. 3, 4, 1. 79.

[^12]: Habital.-Circompolar; West coast of North America to Dacific Grove, California.

[^13]:

[^14]: ${ }^{\prime}$ The following is quoted from Miers, Journ. Linn. Soc. London, XVI, 1883, 1. 63: "Mr. Spence Bate (Lord's Naturalist in British Columbia, II, 1866, p. 282) refers without any description, specimens fiom Esquimanlt Harbor, British Columbia, to Idotea stricta Dana; it is far more probable that they belong to Idotea ochotensis."

[^15]: ${ }^{1}$ Miers, Journ. Linn. Soc. London, XVI, 1883, pp. 42, 43.
 ${ }^{2}$ Benedict, Proc. Acad. Nat. Sci. Phila. (1897), p. 391.

[^16]: ${ }^{1}$ Feuille des Jeunes Naturalistes, 1895.

[^17]: ${ }^{1}$ Sce key on p. 843 for characters of genus.

[^18]: ${ }^{1}$ Dr. Benedict's key is used in part for the genus Arcturus. Proc. Biol. Soc. Washington, XII (1898), pp. 42, 43.

[^19]: ${ }^{1}$ Sars, Crust. of Norway, II, 1897, Pts. 5, 6, pp. 95, 98.
 ${ }^{2}$ Idem, Pts. 5, 6, pp. 98-100, 103, 104.

[^20]: ${ }^{1}$ See Budde-Lund for further synonymy.

[^21]: ${ }^{1}$ Cubaris is oldest synonym of preoccupied Armadillo (Stebbing, Hist. of Crust., 1893, p. 433).
 ${ }^{2}$ Crust. 1sop. Terrestria, 1885, p. 40.
 Proc. N. M. vol. xxi- 55

[^22]: ${ }^{1}$ Sars, Crustacea of Norway, II, 1898, pp. 195, 196. pls xı, Xir.
 ${ }^{2}$ Bopyride parasitic on C'rangon erangon (Liuntuls), Nectocrangon lar (Owen), Nectocrangon alaskensis Kingsley, and other shrimps, have been reserved for more detailed study.

